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Abstract—In this paper we design and implement a middle-
ware service for dynamically allocating computing resources for
Apache Spark applications on cloud platforms, and consider two
different approaches to allocate resources. In the first approach,
based on limited execution data of an application, we estimate
the amount of resource adjustment (i.e., Δ) for each application
separately a priori which is static during the execution of
that particular application (i.e., Approach - I). In the second
approach, we adjust the value of Δ dynamically during runtime
based on execution pattern in real-time (i.e., Approach - II).
Our evaluation using six different Apache Spark applications
on both physical and virtual clusters demonstrates that our
approaches can improve application performance while reducing
resource requirements significantly in most cases compared to
static resource allocation strategies.

Index Terms—Resource Allocation, Apache Spark, Resource
Scaling, Performance Prediction

I. INTRODUCTION

An increasing number of organizations are utilizing cloud

platforms to provide services and host third party computing

applications [1], [2]. In this rapidly changing technologi-

cal landscape, cloud management, especially cloud resource

allocation, is becoming increasingly important to minimize

operating cost [3]–[11]. However, as workload and computing

resource requirements often vary across different categories of

applications (e.g., graph processing, image processing), static

resource allocation strategies can lead to resource wastage

and/or suboptimal performance. Prior efforts attempted to

address this by developing dynamic resource allocation strate-

gies [12]–[15]. However, given that multiple applications are

often executed concurrently on cloud platforms, commonly

used prediction-based allocation strategies that require prior

training data often suffer from poor scalability.

To address this challenge, as resource demand for an appli-

cation often varies with time, we present an application-level

dynamic resource allocation scheme that is designed to adjust

the computing resource according to the changes in work-

loads and resource demands during runtime. Specifically, as

reassigning resources during runtime affects the performance

of the current timeslot and thereby affects the application

resource requirements for the subsequent time slots, we design

a closed-loop algorithm that combines runtime prediction with

resource allocation. In our framework we leverage the current

and prior resource usage to predict future demand, and use

either an a priori calculated (Approach-I) or dynamically

adjusted (Approach-II) threshold value (i.e., Δ) to adjust the

amount of allocated resources for the future time intervals. Our

experiments using six different Apache Spark data processing

applications on both physical and virtual clusters demonstrates

that our approach can improve application performance while

reducing resource demand significantly in most cases com-

pared to static allocation strategies. Furthermore, in case of

multiple concurrent applications, even when performance is

affected negatively (by at most 13%) in a small number of

cases, it led to significant reduction in resource requirements

(i.e., reduction in resource requirements ranged between 49%

to 84% in cases where the performance were affected nega-

tively).

The rest of this paper is organized as follows. Relevant prior

work is discussed in Section II. Section III presents the de-

tailed design and implementation of our system. Experimental

result is presented in Section IV. Finally, Section V concludes

the paper.

II. RELATED WORK

A significant volume of prior work exists that has looked

at dynamic resource allocation using various techniques such

as performance modeling, optimization of cloud configura-

tions, and job scheduling [6]–[8], [12]–[19]. Among these,

PARIS [7] applies data-driven modeling approach to choose

the optimal virtual machine based on target performance

and cost constraints. It combines offline and online stages

to construct a machine learning model (i.e., random forest

model), and estimates task performance and the resulting cost

to select the most cost effective VM type. In the offline

stage, it runs a large set of benchmarks and collects profiling

data for each VM. In the online stage, given the input of a

representative task by a user, this system builds a performance

model, invokes performance predictors, and estimates the cost

of each VM to enable a high-level policy to choose a VM.

However, it needs sufficient benchmark workload data to train

the model in order to achieve high accuracy prediction for VM

selection.

In a complimentary approach, a group of work exists that

treats resource allocation problem as a cloud configuration

optimization problem [15], [20]–[23]. For instance, CherryP-

ick [15] attempts to optimize configuration settings such as the

number of VMs, number of CPU cores, and RAM size in the

context of various cloud applications (e.g., Spark regression
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application, MapReduce applications). Towards that, it applies

a Bayesian Optimization engine to build performance models,

designs a search controller to orchestrate the configuration se-

lection process including providing candidate configurations to

the Bayesian Optimization engine and searching over multiple

iterations, and uses a cloud controller to facilitate the control

of running workloads. However, CherryPick needs to be rerun

to build a new model each time the workload changes.

Along with modeling based approaches, there are prior

efforts that attempt to allocate resources based on appli-

cation resource demands [12], [14], [18], [19], [24]. For

instance, Pocket [12], which is close in spirit to our work,

investigates the challenge of dynamically allocating resources

along multiple dimensions (e.g., CPU, network, storage) for

serverless applications. This system is designed for ephemeral

data sharing. To ensure that serverless applications are not

constrained by I/O bottleneck, Pocket uses a control plane

to determine job I/O requirement based on “hints” from

registered jobs regarding resource requirements, and selects

storage tier (such as DRAM, disk) and the number of storage

servers. It controls virtual machines hosting containers of

serverless applications for automatic and dynamic resource

allocation, thereby providing high I/O performance with lower

cost. Prior efforts also looked at data stream processing (DSP)

systems where system needs to be scaled up or down based

on incoming data rate and resource usage. For instance, [18]

investigated a controller based approach to reduce the cost of

scaling operations by making the scaling decisions based on

changes in data rate and system states. It utilizes an Extended

Kalman Filter (EKF) for smoothing the measured system states

to reduce the number of operations for scaling system, and

performs predict-update iterations for auto scaling in response

to changes in system states.

While a significant volume of prior work exists that looked

at dynamic resource allocation for cluster workloads, in con-

trast to prior efforts, our work treats each cloud application

separately, and uses an application-level dynamic resource

allocation approach to improve application performance while

minimizing resource requirement.

III. OVERVIEW

In this work we focus on dynamically allocating resources

for cloud applications (e.g., map reduce framework, Apache

Spark) that often execute in multiple stages. For instance,

Apache Spark application (which is the focus of our work)

typically consists of multiple execution stages that are ex-

ecuted sequentially where each stage implements a distinct

operation of an application program. As such, during the

execution of an application, the resource usage patterns often

vary across execution stages of the application. One way

to allocate resources for such applications is to construct

fine grained stage-specific prediction models, and use that to

predict and allocate resources. However, this approach requires

constructing models for each application separately, which is

not scalable.

To address this, in this paper we design a dynamic resource

allocation middleware service that leverages resource utiliza-

tion information at the application level to allocate resources

during runtime. In contrast to application-level analytical per-

formance models, leveraging run time traces allows us to infer

resource contention at the system level and address that with-

out understanding the inner workings of a target application. In

our work, to capture changes in resource requirements during

the execution of an application, we calculate resource usage

profiles dynamically without knowing the stage boundaries

within an application. Specifically, in our framework, for

a distributed data processing application, we construct H
resource usage profiles for an application running on a cluster

of H working nodes where each resource usage profile consists

of a series of timestamped resource usage vectors as shown in

equation 1. There is one resource usage vector for every time

interval. The number of the resource usage vectors (i.e., Nh)

is determined by the execution duration of an application and

the sampling interval, which is calculated as in equation 2.

Resource = {Resourceh | 1 ≤ h ≤ H} (1)

Resourceh = {ResourceUsageh,i | 1 ≤ i ≤ Nh}
Nh =

AppDuartionh

T imeIntervalh
(2)

Here, H is the number of working nodes in the cluster. Nh is

the number of ResourceUsage vectors, and T imeIntervalh
is the time gap between two resource usage vectors on host h
(i.e., 1s is used as the default value). AppDuartionh is the

application execution time on host h.

For a given time interval, there is one resource usage vector

that represents the resource usage (e.g., CPU, Memory, and

I/O) for an application as shown in equation 3. To construct

these resource utilization vectors, we leverage /proc filesystem

which can be analyzed with minimal overhead. Specifically,

for CPU utilization, we use the percentage of CPU utilization

at the user level (application) and the system level (kernel)

as shown in equation 4. While there are different resources

that may impact performance and can be included in our

framework (e.g., memory utilization, I/O), in our current im-

plementation we focus on tuning CPU resource as it turned out

to be the most influential in impacting application performance

in our case.

ResourceUsageh,i = (CPUh,i,MEMh,i, IOh,i) (3)

CPUh,i = (usrh,i, sysh,i) (4)

Here 1 ≤ i ≤ Nh, and Nh is the number of time points

calculated as in equation 2.

For CPU, there are two important parameters, namely,

cpu.cfs period us and cpu.cfs quota us, that can be ad-

justed to tune the CPU resource allocation. These can be also

set to allow an application to use all the available computing

resources in the cluster. While these can be set statically a

priori for applications that exhibits mostly constant resource

usage patterns, however, this is often not suitable as resource
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requirements for most applications vary during runtime. For

such applications, static resource allocation will result in

resource wastage if higher resource cap than needed is set,

or lead to performance degradation if lower cap than needed

is set. To avoid this problem, we design a dynamic resource

allocation middleware service, and use cgroup (a linux ker-

nel feature) [25] to control the maximum CPU resource an

application can acquire during runtime. Details are presented

below.

A. Resource Allocation

The main idea behind our middleware service is to allocate

computing resource for the next interval based on the resource

usage of the current and last interval. Specifically, if the

resource usage for the current interval is lower than the

last interval, we predict that the resource requirement has

decreased, and therefore reduce the maximum resource limit

for the next time interval. However, if the resource usage is

as high as the current maximum value, it is possible that the

maximum limit is set to too low. In that case, in order to

allow resource scaling-up for an application, we adjust the

maximum limit by adding a value Δ to the current limit as

shown in equation 5.

ResourceQuota = currentUsage+Δ, (5)

0.1 � Δ � max res

In this equation, max res is the maximum resource that

can be allocated. For CPU resource, it is the value of total

available CPU cores on one working node.

In our work, we consider two different approaches to

estimate the value of Δ. Specifically, in the first case, we

calculate the value of Δ for each application separately which

is static during the execution of that particular application (i.e.,

Approach - I). Note that, while Δ is static during the execution

of an application, it is different for each application and

estimated based on limited execution data of each application

using our developed algorithm. In the second case, the value

of Δ changes dynamically during execution based on resource

usage pattern in real-time (i.e., Approach - II). We present each

of these approaches below.

1) Approach - I: Use of Application-specific Δ: As re-

source consumption varies across time, ideally, there should be

a (possibly different) resource limit (resource quota) for each

time interval as shown in equation 6. The time interval is set

to one second in our case, which can be set to other values

to tune the reactivity of the algorithm depending on resource

usage patterns.

ResQuota = {quotai | 1 ≤ i ≤ Nh} (6)

quotai = usgi−1 +Δ (7)

Here, Nh is the number of time intervals for the target

application on host h. In equation 7, resource quota quotai
is determined based on previous resource usage and Δ.

While having a (possibly) different Δ for each time interval

may lead to near-optimal resource allocation, it is difficult to

estimate Δ for each time interval for each application. As

such, we attempt to estimate a single value for Δ for each

application that may minimize the prediction error. Towards

that, we designed a search algorithm as shown in Algorithm 1

that iterates through a series of values within a given range

to find a value for Δ that minimizes a given cost function.

Specifically, to estimate Δ for a specific application (e.g.,

PageRank), we first execute the application (e.g., PageRank) to

construct the resource usage profile as a sequence of values for

that application as shown in equation 8. The number of data

points (i.e., N ) in the resource usage profile is determined

based on the total execution time of the sample application

and the time interval as shown in equation 9.

SampleResUsage = {usgi | 1 ≤ i ≤ N} (8)

N =
SampleApplicationDuration

T imeInterval
(9)

The next step is to find the ResQuota that minimizes

Distance defined in equation 10, which is calculated as the

summation of the differences between the allocated resource

quota (i.e., quotai) and resource usage values.

Distance =
∑N

i=1
(quotai − usgi)

2 (10)

Here quotai is a value within the range of [0.1, CoreNum]
where CoreNum is the number of total CPU cores.

As shown in Algorithm 1, the idea is to try each δ value

in a given range (i.e., [0.1, CoreNum]) with step size inc,
and identify the δ that minimizes the distance calculated in

equation 10. Further, as setting the resource quota too small

can hurt performance, to avoid this, we add a constraint to keep

the quota value from being too low. Specifically, diff sum
is calculated as in equation 11, and diff sum > 0 is used as

a constraint to ensure that the sum of quota values is positive.

diff sum =
∑N

i=1
(quotai − usgi) (11)

The time complexity of this algorithm is O(N×M), where

N is the number of time points in the sample application as

calculated in equation 9, and M is the number of possible δ
within the range which is calculated as M = CoreNum/inc.
Here inc is the step size. Compared to actual application

execution, the execution time of the sample application is

smaller. As N and M are relatively small, the time complexity

of this algorithm is low (i.e., N=33 and M=60 in our

implementation).

2) Approach - II: Use of Dynamic Δ: In our second

approach, instead of calculating a single Δ value for each

application, we design an algorithm to dynamically adjust Δ
at each time interval based on the current value of Δ, allocated

resources, and the actual resource usage as shown in equation

12 and 13.
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Input: ResourceProfile res

Output: Recommended Δopt

1 Function ParameterSearch
2 res = {usgi | 1 ≤ i ≤ N};
3 Initialize δ = 0.1, inc = 0.1,max dis = inf ;

4 while δ � CoreNum do
5 quota = δ;

6 dis = 0;

7 diff sum = 0;

8 notLow = True;

9 for usg in res do
10 diff = quota− usg;

11 diff sum = diff sum+ diff ;

12 if diff sum < 0 then
13 notLow = False;

14 break ;

15 end
16 dis = dis+ diff2;

17 quota = min(usg + δ, CoreNum);
18 end
19 if dis < max dis and notLow = True then
20 max dis = dis;

21 Δopt = δ;

22 end
23 δ = δ + inc;
24 end
25 end

Algorithm 1: Search Algorithm for Parameter Δ

Δ = {δi | 1 ≤ i ≤ Nh} (12)

δi+1 =

{
δi − (quotai − usgi)× dec, quotai > usgi

δi + (maxres − usgi)× inc, quotai � usgi
(13)

In equation 13, δi+1 is adjusted depending on which of the

two conditions is satisfied. Specifically, in the first condition,

if the currently allocated resource quota (i.e., quotai) is larger

than the current resource usage (i.e., usgi), we decrease δi
to avoid over allocation. The difference is determined based

on the currently allocated resource quota (i.e., quotai) and

resource usage (i.e., usgi). To control the rate of decrease, we

use a ratio dec which is set to 0.5. In the second condition,

if the currently allocated resource quota (i.e., quotai) is not

larger than the current resource usage, we increase δi. The

difference is determined based on the maximum allowed

resource max res and the current resource usage usgi. Under

this condition, we use a ratio inc to control the rate of increase

which is set to 0.2 in our current implementation. The value

of dec and inc is determined empirically and can be adjusted

to tune the sensitivity of the algorithm.

B. System Implementation

The middleware is implemented using Linux cgroups fea-

tures. As shown in Figure 1, this middleware is deployed on

TABLE I: Cluster Setting

Configuration Physical Cluster Virtual Cluster
Number of Nodes 4 4
Number of CPU cores per Node 20 6
RAM Memory size per Node 16GB 4GB

each worker node. After an application is launched, the cor-

responding process is detected by the “Application Listener”

module. Next, the “Resource Monitor” module is triggered to

collect resource usage metrics, which is used to dynamically

allocate resource by the “Resource Allocation” module at each

time interval. Resource usage is extracted by analyzing /proc
files. Each application process running on different working

nodes is monitored and controlled separately. The overhead of

running this tool is minimal and requires less than 1% CPU

usage on our cluster.

Fig. 1: Tool Architecture

IV. EVALUATION

We evaluated the performance of our approach by executing

multiple Apache Spark applications [26] on a cluster that

included four physical machines. One machine was configured

as the master node and the remaining three as the working

nodes. The configuration of this cluster is listed in Table

I. Each machine had 20 CPU cores and 16GB of RAM

memory. The maximum CPU utilization limit was 2000%

(20 × 100%) for each machine on this cluster. In addition to

evaluating performance for a single application, to evaluate the

performance for applications running in parallel on the cluster,

on each physical machine we set up 3 virtual machines using

Vagrant [27]. This allowed us to execute 3 applications in

parallel.

In our experiments, Apache Spark (version 2.1.0) appli-

cations were executed on top of Hadoop Distributed File

System (HDFS, version 2.7.3) in standalone mode [28]. Using

standalone mode enabled us to apply our approach without

external control and conflict. To evaluate our approach, we

used different types of Apache Spark applications as listed in

Table II. For input, Graph processing applications PageRank

and ConnectedComponents used 50GB of graph data gen-

erated from LiveJournal network dataset downloaded from

SNAP [29]. TriangleCount used a smaller subset of this data
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TABLE II: Apache Spark Applications

Application Abbrev. Category Input Size
PageRank PR Graph Processing 50GB
ConnectedComponents CC Graph Processing 50GB
TriangleCount TC Graph Processing 10GB
WordCount WC Text Analysis 80GB
K-MeansClustering KM Machine Learning 50GB
LogisticRegression LR Machine Learning 50GB

to avoid out-of-memory (i.e., OOM) problem. WordCount

application used 80 GB of Wikipedia data downloaded from

public source [30]. Two classical ML applications such as

KMeans clustering and Logistic Regression used 50GB data

of Color-Magnitude Diagram of Sloan Digital Sky Survey

(SDSS) [31].

To demonstrate the effectiveness of our middleware, we

compared the application execution time and total allocated

CPU resources for the presented approaches against static

allocation strategies. Execution time is calculated as the total

run time of each application. Resource is calculated as the

amount of allocated resources at each time point, and this value

determined the upper bound of resource usage for that time

point. For example, CPU quota 1 means 100% CPU usage is

the limit, and CPU quota 20 means the application can reach

at most 2000% CPU usage. The total CPU resource allocated

is calculated as the summation of allocated resource quota at

each time point during the application duration as shown in

equation 14.

TotalResAllocated =
∑H

h=1

∑Nh

i=1
ResQuotai,h (14)

Here H is the number of total working nodes in the cluster,

and Nh is the number of time intervals calculated in Equation

2.

A. Results for a Single Application

To evaluate the performance of our approach in the context

of a single application running in isolation, we executed six

different Apache Spark applications one at a time under five

different conditions as follows.

• CPU resource statically allocated at 2000% (i.e., Res-

2000)

• CPU resource statically allocated at 500% (i.e., Res-500)

• CPU resource statically allocated at 300% (i.e., Res-300)

• CPU resource allocated using “Approach - I”

• CPU resource allocated using “Approach - II”

CPU resource was set to 2000% to compare against the

maximum available CPU resource. 500% and 300% CPU

usage limit were chosen empirically as the average CPU usage

fell within that range for these applications.

In case of Approach - I, we first ran the corresponding

sample application for each application where the input data

size of each application was set to 2GB to minimize runtime

of the sample application. We used this sample application

trace to find the corresponding Δ. The execution time for each

sample application and corresponding Δ are listed in Table III.

TABLE III: Overhead and Δ for Single Application

(“Approach-I”)

Application Sample Time Delta

PageRank 82s 1.4
ConnectedComponents 33s 0.7
TriangleCount 41s 0.7
WordCount 29s 1.5
K-MeansClustering 175s 0.6
LogisticRegression 75s 0.4

The performance improvements are presented by comparing

the execution times and allocated resources for these ap-

plications under different resource allocation strategies. The

execution time for each application under each condition is

displayed in Figure 2. We compared the total allocated CPU

quota for different conditions in Figure 3.

Fig. 2: Performance Improvement for Single Application

Fig. 3: Resource Allocation for Single Application

The performance for different approaches are listed in

Table IV. As can be seen, Approach-I reduced resource

requirement in all cases whereas Approach-II reduced resource

requirement in all cases except for Res-300 condition for Lo-

gisticRegression which increased by 1%. Approach-I improved

performance in all but seven conditions (i.e., (PR, Res-2000);

(CC, Res-2000); (TC, Res-2000); (WC, Res-2000); (KM, Res-

2000); (LR, Res-2000); (LR, Res-500)). Approach-II improved

performance in all but six conditions (i.e., (PR, Res-2000);

(CC, Res-2000); (TC, Res-2000); (WC, Res-2000); (KM,

Res-2000); (LR, Res-2000)). Notably, while performance is

reduced by at most 19% using Approach-II compared to the

Res-2000 condition, it led to significant reduction in resource

requirements (i.e., reduction in resource requirements ranged

between 57% to 77% in cases where the performance were

affected negatively).
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TABLE IV: Performance Improvement and Resource Quota

Reduction for Single Application

App. Condition Approach-I Approach-II
Time Resource Time Resource

PR Res-2000 -3% 59% -5% 58%
Res-500 45% 12% 44% 11%
Res-300 64% 3% 63% 1%

CC Res-2000 -22% 80% -14% 77%
Res-500 10% 41% 15% 32%
Res-300 27% 21% 32% 8%

TC Res-2000 -24% 77% -6% 73%
Res-500 4% 29% 19% 15%
Res-300 40% 25% 49% 11%

WC Res-2000 -2% 71% -1% 72%
Res-500 41% 32% 42% 35%
Res-300 63% 30% 64% 33%

KM Res-2000 -22% 60% -10% 57%
Res-500 32% 11% 38% 5%
Res-300 59% 11% 63% 4%

LR Res-2000 -27% 76% -19% 69%
Res-500 -2% 23% 4% 1%
Res-300 37% 21% 41% -1%

TABLE V: Groups of Multiple Concurrent Applications

Group Application Start Time Input Size
Group I PageRank 87s 20GB

WordCount 98s 20GB
K-MeansClustering 2s 20GB

Group II ConnectedComponents 40s 20GB
TriangleCount 11s 1GB
LogisticRegression 3s 20GB

B. Results for Multiple Concurrent Applications

To evaluate the performance of our approach for multiple

concurrent applications that may lead to interference across

applications, we created three virtual clusters on our physical

cluster by creating three virtual machines on each physical

machine using Vagrant (configuration shown in Table I). For

evaluation, TriangleCount used 1 GB input data, and the

other five applications used 20 GB of input data each (listed

in Table V). These six applications were executed in two

separate groups, Group I included PageRank, WordCount,

and KMeansClustering, and Group II included Connected-

Components, TriangleCount and LogisticRegression. These

applications were randomly assigned in each group. All three

applications of a particular group were executed in parallel on

the virtual cluster. In each group, these three applications were

executed with different starting time T , which is randomly

selected from the range [0, 100) (listed in Table V). This was

done to ensure that the stages that interfere across applications

are unpredictable.

To compare against our approach, we executed each group

of applications under five different conditions:

• CPU resource statically allocated at 600% (i.e., Res-600)

• CPU resource statically allocated at 300% (i.e., Res-300)

• CPU resource statically allocated at 200% (i.e., Res-200)

• CPU resource allocated using “Approach - I”

• CPU resource allocated using “Approach - II”

CPU resource was set to 600% to compare against the

maximum available CPU resource on the virtual cluster. 300%

TABLE VI: Overhead and Δ for Multiple Applications

(“Approach-I”)

Application Sample Time Delta

PageRank 102s 0.7
WordCount 33s 0.5
K-MeansClustering 72s 0.5
ConnectedComponents 38s 0.6
TriangleCount 34s 0.6
LogisticRegression 45s 0.6

and 200% CPU usage limit were chosen empirically as the

average CPU usage fell within that range for these applications

on the virtual cluster.

In case of Approach - I, we first ran the corresponding sam-

ple application for each application where the input data size

of each application was set to 2GB except for TriangleCount

which used 1GB of input data. We used this sample application

trace to find the corresponding Δ. The execution time for each

sample application and corresponding Δ are listed in Table VI.

The performance for each application under each condition

is shown in Figure 4. We calculated total CPU resource quota

using equation 14, and compared the total allocated resource

quota under different conditions in Figure 5.

The performance for different approaches are listed in

Table VII. Approach-I reduced resource requirement in all

cases except for Res-200 condition for K-MeansClustering

which increased by 1% whereas Approach-II reduced resource

requirement in all cases. Approach-I improved performance

in all but five conditions (i.e., (PR, Res-600); (CC, Res-600);

(TC, Res-600); (LR, Res-300); (LR, Res-200)). Approach-II

improved performance in all but four conditions (i.e., (PR,

Res-600); (KM, Res-600); (CC, Res-600); (TC, Res-600)).

Notably, while performance is reduced by at most 13% using

Approach-II compared to the Res-600 condition, it led to

significant reduction in resource requirements (i.e., reduction

in resource requirements ranged between 49% to 84% in cases

where the performance were affected negatively).

(a) GroupI (b) GroupII

Fig. 4: Performance Improvement for Multiple Concurrent

Applications

C. Allocated Resource vs. Actual Usage

We collected the detailed trace of allocated CPU resources

for each application, and compare that against the actual

resource usage when executed under two different resource

allocation approaches (i.e., Approach - I, Approach - II) for
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(a) GroupI (b) GroupII

Fig. 5: Resource Allocation for Multiple Concurrent

Applications

TABLE VII: Performance Improvement and Resource Quota

Reduction for Multiple Concurrent Applications

App. Condition Approach-I Approach-II
Time Resource Time Resource

PR Res-600 -30% 55% -13% 61%
Res-300 6% 35% 19% 43%
Res-200 19% 16% 29% 26%

WC Res-600 6% 69% 13% 70%
Res-300 4% 37% 12% 39%
Res-200 13% 14% 20% 18%

KM Res-600 0% 47% -2% 49%
Res-300 15% 11% 14% 14%
Res-200 36% -1% 35% 3%

CC Res-600 -10% 63% -9% 65%
Res-300 9% 38% 9% 41%
Res-200 24% 22% 24% 26%

TC Res-600 -4% 77% -6% 84%
Res-300 10% 61% 8% 72%
Res-200 24% 51% 23% 64%

LR Res-600 4% 70% 12% 72%
Res-300 -6% 33% 2% 39%
Res-200 -1% 5% 7% 13%

each time interval. Due to space constraint, we present the

result for PageRank and LogisticRegression in Figure 6 and

Figure 7 respectively that exhibit different resource usage

patterns. As can be seen, the allocated CPU resource closely

follows the actual CPU resource usage, and adapts to the

pattern of CPU resource usage over time.

(a) Approach - I

(b) Approach - II

Fig. 6: PageRank

(a) Approach - I

(b) Approach - II

Fig. 7: LogisticRegression

D. Discussion

In our experiments, our presented approaches were able

to improve application performance while reducing resource

requirements. To better understand the underlying reasons

behind such improvement, consider the example of PageRank

application. As shown in Figure 8, the PageRank application

contains 23 stages (i.e., phases defined by its inner computing

pipeline). Among these, the first stage (labeled 0) is the

longest as shown in Figure 8a. The median resource usage

of Stage 0 is 152%, which is less than 500% allocated

under Res-500 condition, and 300% allocated under Res-300

condition. This leads to resource wastage in Stage 0 under

static allocation scheme. In contrast, our tool can allocate

resources as needed, thereby avoiding over provisioning of

resources. Furthermore, resource usage within each stage also

exhibits significant variations over time, which is evident from

the resource usage distribution per stage shown in Figure 8b.

As such, allocating resources dynamically both within a stage

and across multiple stages reduce the amount of allocated

resources without sacrificing the application performance in

our scheme.

V. CONCLUSION

In this paper we present a middleware service to dy-

namically allocate computing resources for distributed data

processing applications running on a cluster. The presented

strategy is oblivious to the application type and able to adjust

resource quota based on changes in resource requirement

throughout the lifetime of an application while incurring negli-

gible runtime overhead. Experimental evaluation using multi-

ple different types of Apache Spark applications demonstrates

the effectiveness of our approach in improving application

performance while reducing resource requirement. We believe

that the presented approaches can be extended for other cloud

platforms as well, and will help to improve resource utilization

while reducing operating costs significantly in cloud settings.
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(a) Stage Timeline

(b) Resource Usage Distribution

Fig. 8: Resource Usage for PageRank Application
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