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Abstract—To maximize resource utilization and system
throughput, hardware resources are often shared across multiple
Apache Spark jobs through virtualization techniques in cloud
platforms. However, while the performance of these jobs running
in virtualized environment can be negatively affected due to
interference caused by resource contention, it is nontrivial to
predict the effect of interference on job performance in such
settings, which is critical for efficient scheduling of such jobs
and performance troubleshooting. To address this challenge, in
this paper, we develop analytical models to estimate the effect of
interference among multiple Apache Spark jobs running concur-
rently on job execution time in virtualized cloud environment.
We evaluated the accuracy of our models using four real-life
applications (e.g., Page rank, K-means, Logistic regression, and
Word count) on a 6 node cluster while running up to four jobs
concurrently. Our experimental results show that the model can
achieve high prediction accuracy, and ranges between 86% to
99% when the number of concurrent jobs are four and all
start simultaneously, and ranges between 71% to 99% when the
number of concurrent jobs are four and start at different times.

Keywords-Apache Spark; Modeling Performance Interference;
Execution Time Prediction

I. INTRODUCTION

Among different cloud computing platforms, Apache

Spark [1] is one of the recently popularized open-source

platforms that is currently used by over 500 organizations,

including companies such as Amazon, eBay and Baidu1.

Apache Spark leverages the concept of resilient distributed

datasets (RDDs) [2] and in-memory computation to enable

fast processing of large volume of data, making it suitable for

large-scale data analytic applications. However, while perfor-

mance prediction in such systems is important to optimize

resource allocation [3] [4] [5], it is nontrivial for Apache

Spark jobs for several reasons as follows. First, the execution

time of a particular job on Apache Spark platform can vary

significantly depending on the input data type and size, design

and implementation of the algorithm, and computing capability

(e.g., number of nodes, CPU speed, memory size), making it

difficult to predict job performance. Second and finally, with

advancement in hardware technology, virtualization technique

is increasingly being used to share resources among appli-

cations [6]. However, while virtualization isolates multiple

applications running on separate virtual machines, the inter-

ference among these applications still affects the execution

performance. Due to the aforementioned factors, modeling

performance of multiple Apache Spark jobs running in a

1http://spark.apache.org/faq.html

virtualized environment concurrently is extremely challenging.

While our own prior effort looked into the problem of perfor-

mance prediction for a single job running on Apache Spark

platform [7], that approach does not address the challenge of

performance modeling for multiple jobs running in parallel on

the same cluster. To address this void, in this paper, we focus

on modeling interference among multiple Apache Spark jobs,

and predict the execution time of a job when interfered with

other jobs. In contrast to hard to interpret machine learning

approaches that are often used to predict system performance

leveraging past system execution data, we apply analytical

approach that can provide a better understanding regarding

the observed behavior (e.g., execution slowdown), exposing

the underlying interactions among multiple jobs [8] [9] [10]

[11]. Specifically, we use jobs (implemented by us) to predict

the slowdown ratio while running multiple jobs concurrently,

and use the slowdown ratio to predict the execution time. As

Apache spark jobs follow a multi-stage execution model (more

details are discussed in Section III) and different stages have

different characteristics (e.g., I/O intensive vs. CPU intensive),

our framework develops interference models for each stage,

and predict execution time for each stage separately. We

evaluated our framework with four real-world applications,

namely, Page Rank, K-means clustering algorithm, Logistic

regression, and Word Count application. We vary the number

of concurrent jobs up to 4 and predicted execution time for

individual stages. While the prediction accuracy for individual

stages vary, it ranges between 86% to 99% when the number

of concurrent jobs are four and all start simultaneously, and

ranges between 71% to 99% when the number of concurrent

jobs are four and start at different times. The rest of the paper

is organized as follows. Section II describes prior research

that is related to our work. Section III explains the models

that are used to predict job performance. Section IV presents

the experimental results. Limitations of our current work is

discussed in Section V. Finally, Section VI concludes the

paper.

II. RELATED WORK

With the proliferation of cloud computing platforms, signif-

icant volume of prior work looked into the problem of per-

formance modeling in cloud settings and distributed systems

in general [12], [13], [14], [15], [16], [17], [18], [19], [20],

[21]. Among these, PREDIcT [12] looked into the problem of

predicting runtime for network intensive iterative algorithms

and focus on Hadoop MapReduce platform. Starfish [15]
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leverages analytical approaches to predict job performance

based on job simulation data. CloudScope [22] is one of

the more recent efforts that employs a discrete-time Markov

Chain model to predict the performance interference of co-

resident applications by modeling an application as a sequence

of job slices and estimating the probability of a job moving

from one state to another considering different factors such as

current workloads and slowdown. Matrix [23] utilizes machine

learning methods to predict application performance on virtual

machines by applying clustering methods to classify appli-

cations and predict the performance of new applications by

comparing against the previously trained models. Interference

modeling among multiple applications running on MapReduce

framework is tried before as well for the purpose of efficient

job scheduling [24]. However, this approach requires train-

ing using different combinations of applications, which can

quickly become prohibitive. MIMP [25] presents a progress

aware scheduler for Hadoop framework that applies regression

model to train and predict task completion time based on

past execution. HybridMR [26] presents another MapReduce

scheduler for hybrid data center consisting of physical and

virtual machines. This scheduler uses performance interference

models to guide resource allocation, and applies linear and

non-linear exponential regression model to capture CPU, I/O,

and memory interference. While these prior efforts provide

invaluable insight to the problem of performance modeling,

however, most of them uses black-box approaches. Moreover,

due to the stage execution model and in-memory computation

feature of Apache Spark platform, it is non-trivial to apply

these approaches as is for predicting effect of interference

on job execution time. Hence, to complement prior efforts,

we focus on developing data-driven analytical models for

modeling interference among multiple Apache Spark jobs as

follows.

III. OVERVIEW

In our model, each Apache Spark job consists of multiple

execution stages where each stage implements distinct opera-

tions of an application program and are executed sequentially.

Moreover, to facilitate parallel processing, input data set is

partitioned into multiple sets and are distributed over multiple

worker nodes. Within each worker node, batches of tasks are

launched to process the corresponding partition of the input

data. The number of tasks within each node is determined

based on the size of the input data and configuration settings

of the program.

For example, if the input data size of the PageRank job is 2.5

GB, the total number of input blocks will be 40 for a default

block size of 64 MB. As the number of tasks is the same as

the input block number and the number of tasks in each stage

is same within one Spark job, there will be 40 tasks in each

stage. However, different CPU core may complete different

number of tasks due to the difference in computing ability

and uncertainty during the program execution.

Given the above multistage execution model, the main idea

behind our work is as follows (Figure 1). First, for a given
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Fig. 1: Performance Prediction for Interfered Jobs

Apache Spark job, we predict the execution time for each

stage leveraging the performance model developed based on

performance of sample job with smaller input data set. Please

note that this model is presented in our prior work [7], and

assumes that there are no interference in the system from other

jobs. Next, we estimate the slowdown ratio for a given number

of jobs running concurrently by executing our simulation job,

which is implemented by us (more details in Section IV) and is

different than any of the four jobs that we used for evaluation.

However, as the slowdown ratio due to interference among

simulated jobs can be different compared to actual jobs, for

a given job, we adjust the expected slowdown ratio by taking

into account the actual job parameters such as input data size

and disk I/O characteristics. Once we estimate the expected

slowdown ratio, we estimate the execution time considering

the interference. For completeness, we first briefly present the

model that is used to predict execution time assuming no

interference from our earlier work [7], and then present the

model for predicting the slowdown ratio due to interference,

which is the contribution of this work that allows us to predict

execution time in the presence of interference among multiple

jobs.

A. Model for Estimating Execution Time

As an Apache Spark job is executed in multiple stages

where each stage contains multiple tasks, we use the following

notation to represent an Apache Spark job:

Job = {Stagei | 0 ≤ i ≤ M} (1)

Stagei = {Taski,j | 0 ≤ j ≤ N} (2)

Here M is the number of stages in a job and N is the number

of tasks in a stage. Next, as different stages within a job are

executed sequentially, we represent the execution time of a job
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as the sum of the execution time of each stage plus the job

startup time and the job cleanup time as follows:

JobT ime = Startup+
M∑
s=1

StageT imes + Cleanup (3)

Next, within each stage, as one CPU core executes one task

at a time, in a cluster with H worker nodes, the number of

tasks P that can run in parallel can be calculated as follows:

P =
H∑

h=1

CoreNumh (4)

Here, CoreNumh is the number of CPU cores of working

node h and H is the number of working nodes in the cluster.

Hence, within an execution stage, tasks in each stage are

executed in batches where each batch consists of P tasks

running in parallel. However, due to the differences in comput-

ing capabilities among different worker nodes in a cluster and

inherent uncertainty in program execution, the execution time

of different tasks may vary significantly. Therefore, the time

spent in a particular stage can be calculated as the maximum

of the sum of all the sequential tasks’ time within a stage plus

the stage startup time and the stage cleanup time as follows:

StageT ime = Startup+
P

max
c=1

Kc∑
i=1

TaskT imec,i

+Cleanup (5)

Here P is the number of total CPU cores, and Kc is the

number of sequential tasks executed on CPU core c. Finally,

as different tasks in a stage follow the same execution pattern,

the execution time of a task can be computed as follows:

TaskT ime = DeserializationT ime+RunTime

+SerializationT ime (6)

Here DeserializationT ime is the time taken to deserialize

the input data, SerializationT ime is the time taken to

serialize the result, and RunTime is the actual time spent

performing operations on data such as data mapping, filtering,

calculating, and analyzing. Based on the above model, to

predict job performance, the presented modeling framework

first executes the program on a cluster using limited amount

of sample input data and collect performance metrics such as

run time during the simulated run.

Next, to predict the execution time of the actual run based

on the extracted performance metric from simulated run, we

first calculate the number of tasks that will be executed in the

actual job as follows: N = InputSize/BlockSize, where

InputSize is the size of the input data, and Blocksize is the

size of one data block in HDFS. The tasks within a stage are

scheduled to run batch by batch, and the number of tasks in

each batch P is computed as shown in equation (4). In one

batch of tasks, while the tasks may start simultaneously, they

may not finish at the same time due to various factors such as

data skew problem, and differences in computing capability

of different worker nodes. Hence, using sampled data, we

calculate the average execution time for a task for a given

stage for a worker node h as follows.

TaskRunTimeh,i = DeserializeT imeh,i

+RunTimeh,i

+SerializationT imeh,i (7)

AvgTaskT imeh =
1

nh

nh∑
i=1

TaskRunTimeh,i (8)

Here nh is the number of tasks running in host h in a particular

stage of the sample job. Moreover, during our experiment, we

observed that the average execution time of the first batch

is significantly different compared to the subsequent batches

within the same stage, which we capture as follows.

Ratioh =
1

nh−Ph

∑nh

i=Ph+1 TaskT imeh,i
1
Ph

∑Ph

j=1 TaskT imeh,j
(9)

Here nh is the number of tasks running in host h, and Ph

is the number of tasks in the first batch. As tasks execute on

different hosts in parallel, to predict the execution time for a

particular stage during actual execution, stage Startup time

and Cleanup time are viewed as constants which are extracted

from simulation logs, and stage execution time is estimated as

follows:

EstStageT ime = Startup+
P

max
c=1

Kc∑
i=1

AvgTaskT imec,i

+Cleanup (10)

EstTaskT imec,i =

{
AvgTaskT imec, i = 1

AvgLaterTaskT imec, i > 1
(11)

Here P is the number of total CPU cores calculated in equation

(4), Kc is the number of sequential tasks running in CPU core

c. AvgTaskT imec is the average time of first batch tasks in

CPU core c of the corresponding host, and is calculated in

equation (8). AvgLaterTaskT imec is the average time of

the following batches of tasks, which could be calculated as

Ratioh×AvgTaskT imeh. While we can apply the prediction

model presented in this section, which was developed in our

previous paper [7], to estimate the execution time for a single

job assuming no interference, we still need a way to predict

the slowdown ratio when interfered with other jobs, which we

address as follows.

B. Modeling Interference

As different stages of a job is expected to have different

characteristics in terms of resource utilization (e.g., CPU, I/O,

memory), different stages of multiple jobs running concur-

rently on a system is expected to result in different interference

pattern, affecting the execution time differently. Based on this

observation, we model the slowdown ratio due to interference

among multiple jobs for each stage separately. Towards that,

in our model, each stage is represented as a vector consisting

of execution time, CPU usage, disk I/O rate, and network I/O

rate as follows.

Resi = (RunTimei, CPUi, DiskIOi, NetIOi) (12)
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Here 1 ≤ i ≤ M , and M is the number of stages in a job.

Next, the slowdown resulting from interference with other

applications for a particular stage is represented as follows.

SlowdownRatio(Stagei,k) = f(Resi,k, ResOtherjobs)
(13)

Here 1 ≤ k ≤ J , 1 ≤ i ≤ M , J is the number of jobs

running in parallel, M is the number of stages in the Apache

Spark job. ResOtherjobs represents the resources consumed

by other jobs that are running concurrently with Stagei,k.

Simply put, this slowdown ratio is the ratio between execution

time with interference over execution time without interference

for a particular stage. Hence, once we can estimate the value

of the slowdown ratio and the expected execution time when

there is no interference, we can estimate the execution time

if there are interference with other jobs. As the slowdown

happens primarily due to contention for bottleneck resources

in the system, to better understand the underlying reasons

behind the slowdown, we ran a series of experiments and

collected job event logs and resource consumption data, and

then extracted the resource usage profile for each stage. Job

event log is generated by Apache Spark platform, and resource

consumption data is collected using system monitoring tool

dstat [27]. Apache Spark log records the time line of different

stages of a running job, which was used to determine the

submission and completion time of different stages of a job.

The resource usage for different stages of a job is represented

as below:

CPUi = (CPUusri, CPUsysi, CPUidlei, CPUwaiti)
(14)

DiskIOi = (RateofDiskReadi, RateofDiskWritei)
(15)

NetIOi = (RateofNetReceivei, RateofNetSendi) (16)

Here 1 ≤ i ≤ M , and M is the number of stages in a

Apache Spark job. As an Apache Spark job uses in-memory

data processing to reduce execution time, in the first stage of

a job, it reads the input data to memory, and then analyzes

the in-memory data in the subsequent stages. Due to this

characteristic, in the first stage, frequent I/O is expected,

leading to longer I/O wait. Based on this observation, as

bulk of the disk I/O happens in the first stage, in our model,

we calculate the slowdown ratio for the first stage only,

and assume that the slowdown ratio in cases where the first

stage interferes with the following stages from another job

is 1.0 (i.e., the slowdown due to interference is expected to

be minimal). Please note that, while this assumption is not

accurate for certain jobs and stages, the error introduced due

to this assumption in prediction accuracy is not significant.

As most of the time spent in the first stage is due to reading

data from disk to memory, we represent the relationship

between the amount of data read in the first stage (e.g., size

of input data), the rate of disk read, and the execution time of

the first stage as follows:

RunTimeStage1 = c× InputDataSize

RateofDiskReadStage1
(17)

Now, if we assume that we execute the same job twice, once

with reduced input data set (i.e., sample job) and once with the

complete input data set (i.e., complete job), from equation 17,

we can have the following. Please note that the word Int.
refers to Interference in the following equations.

InputDataSizeSamplejob

InputDataSizeCompletejob
=

RateofDiskReadSamplejob,Stage1

RateofDiskReadCompletejob,Stage1
×

RunTimeSampleJob,Stage1

RunTimeCompletejobwithoutInt.,Stage1

(18)

Based on equation 18, we can have the following equation for

predicting the rate of disk read for a complete job.

PredictedRateofDiskReadCompleteJobwithoutInt.,Stage1 =

RateofDiskReadSampleJob,Stage1×
RunTimeSampleJob,Stage1

RunTimeCompleteJobwithoutInt.,Stage1
× InputSizeCompleteJob

InputSizeSampleJob

Please note that, in the above equation, we can estimate

the value of RunTimeCompleteJobwithoutInt.,Stage1 using the

model described in Section III-A from our earlier work [7].

Once we predict the rate of disk read for a complete job with

no interference, next, we need to model the relation between

the rate of disk read and the slowdown ratio when there

is interference. For that, first, we run a simulation program

(written by us as described in Section IV) to collect the runtime

information with and without interference and calculate the

parameter βn as follows.

βn =
1

RateofDiskReadSimulationRunwithoutInt.,Stage1
×

(
RunTimeSimulationRunwithInt.fornjobs,Stage1

RunTimeSimulationRunwithoutInt.,Stage1
−

⌊
RunTimeSimulationRunwithInt.fornjobs,Stage1

RunTimeSimulationrunwithoutInt.,Stage1

⌋
)

(19)

In this paper, we assume that there can be at most 4 concurrent

jobs in a system, and varied n between 2 to 4 to calculate β2,

β3, and β4. Please note that running the simulation job and

calculating βn takes only few minutes and need to be done

only once, making this approach quite scalable. Next, we use

βn to estimate the slowdown ratio when there are n concurrent

jobs in the system as follows.

SlowdownRatio(Stage(1,k)) =

RunTimeCompleteJobwithInt.,Stage1

RunTimeCompleteJobwithoutInt.,Stage1
=

βn × PredictedRateofDiskReadCompleteJobwithoutInt.,Stage1+⌊
RunTimeSimulationrunwithInt.,Stage1

RunTimeSimulationRunwithoutInt.,Stage1

⌋

(20)

C. The Cascading Effect

Given the above formulation, if we assume that all the

jobs are of same type and start at the same time, modeling
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interference is straightforward as they all have the same

execution behavior in each stage. However, for interference

among different types of jobs possibly starting at different

times, this is a bit more complicated due to possible cascading

effect. For example, the slowdown of stage 1 of job A may

push this stage to interfere with stage 2 of job B. Hence, a

dynamic interference estimation algorithm is designed to solve

this problem. The main idea behind the algorithm is as follows.

First, the algorithm uses the execution time line of each job

as input, and calculates the slowdown ratio for each stage of

different jobs within the same time slot, and generates the

execution time line of each job under interference condition.

Based on that, the algorithm identifies the job that will finish

its first stage the earliest, removes that job from the list, and

recalculates the effect of interference for the remaining jobs

for the remainder of the execution time. The algorithm applies

this repeatedly until the list becomes empty. This dynamic

interference estimation algorithm is described in Algorithm 1.

IV. EVALUATION

To evaluate the accuracy of our modeling framework, we used

a cluster of 6 nodes and used Xen hypervisor [28] to create

up to four virtual machines on each physical machine. Each

virtual machine is configured with 4GB of memory and 1 CPU

core. For the deployed Apache Spark platform, one machine

serves as the master node, and the remaining five machines

serve as working nodes. In six physical machines, we cre-

ate multiple clusters leveraging virtual machines to execute

multiple Apache Spark jobs in parallel. In our evaluation,

for prediction, first, we need to estimate the parameter βn in

equation (19). Towards that, we implemented our own Apache

Spark job and executed that on our cluster to obtain the

execution time and resource consumption information. This

simulation job consists of three stages executing distinct(),

groupByKey(), and count() operation respectively. Distinct()

implements a mapping function and parses the input data,

groupByKey() processes the output of distinct() operation,

and count() is a CPU intensive operation performing data

summarization. This simulation job is executed with 2.5 GB of

sample data where the first stage implementing the Distinct()

operation involves significant I/O compared to the following

two stages. To measure βn, we executed n (n=1,2,3,4) in-

stances of this simulation job in parallel. As shown in Figure

2, the effect of interference is significant for the first stage

but minimal for the subsequent stages. Once we estimate the

value of βn, subsequently, we used our formulation to predict

the execution time for each stage for each job separately in

different execution scenarios and add up the prediction error

for each stage to calculate the total prediction accuracy R as

below.

R = |1−
M∑
i=1

|PredictedT imei −MeasuredT imei|∑M
j=1 Timej

| (21)

Here M is the number of stages in a job, PredictedT imei is

the predicted execution time for stagei, and MeasuredT imei

Input: List JobProfiles listing Execution Information

without Interference

Output: List JobT ime listing Execution Time with

Interference

1 Function PredictJobExecution
2 Initialize List Phases, List JobT ime;

3 for all job ∈ JobProfiles do
4 Phases.add(job.getStage(0)); //first stage

5 end
6 while Phases.size > 0 do
7 Initialize MinTime ← MaxValue;

8 for all phase ∈ Phases do
9 r ← phase.calculateSlowdownRatio(Phases);

10 phaseTime ← phase.getStageTime() × r;

11 phase.setPhaseTime(phaseTime);

12 phase.setSlowdownRatio(r);

13 if phaseTime < MinTime then
14 MinTime ← phaseTime;

15 end
16 end
17 for all phase ∈ Phases do
18 if phase.getPhaseTime = MinTime then
19 StageTimeInterfere ← MinTime +

phase.getPartialTime();

20 JobT imes.add(phase
,StageTimeInterfere);

21 Phases.remove(phase);

22 if JobProfiles.hasNextStage(phase)
then

23 nextStage ←
JobProfiles.nextStage(phase);

24 Phases.add(nextStage);

25 end
26 else
27 phase.setStageTime(phase.getStageTime()

− MinTime
phase.getSlowdownRatio() );

28 phase.setPartialTime(phase.getPartialTime

+ MinTime);

29 end
30 end
31 end
32 end

Algorithm 1: Interference Estimation Algorithm

is the actual execution time of stagei. Different evaluation

scenarios are presented below.

A. Interference Among Multiple Jobs of the Same Type Start-
ing Simultaneously

In this part of the evaluation, we present the accuracy of

prediction while modeling the effect of interference among

multiple jobs of the same type (e.g., interference between n

instances of job x). Towards that, we choose four Apache

Spark jobs: PageRank, K-Means, Logistic Regression and

WordCount. WordCount job is a non-iterative job while the
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Fig. 2: Execution Time for Different Number of Simulation

Jobs

TABLE I: Prediction Accuracy for Interference Among Same

Jobs

JobName Job Number First Stage Whole Job

PR 2 0.97 0.80

3 0.96 0.85

4 0.92 0.82

KM 2 0.75 0.70

3 0.71 0.68

4 0.98 0.92

LR 2 0.74 0.78

3 0.79 0.81

4 0.97 0.97

WC 2 0.87 0.86

3 0.96 0.94

4 0.95 0.94

remaining three are iterative jobs. For PageRank, we use

the LiveJournal network dataset from SNAP [29], which is

processed through mapping each node id into longer string to

form a 20 GB input data set. K-Means and Logistic Regression

applications use 20 GB of numerical Color-Magnitude Dia-

gram data of galaxy from Sloan Digital Sky Survey (SDSS)

[30]. WordCount application uses 20 GB of Wikipedia dump

data. For prediction, we first executed the sample job (e.g.,

Page rank) with 2.5 GB of input data to collect the job

execution profile, which is then used to predict the execution

time assuming no interference. Finally, we used our framework

to adjust the prediction assuming interference. The prediction

accuracy is summarized in Table I. In the table, PR, KM, LR,

and WC refers to PageRank, K-Means, Logistic Regression,

and WordCount application respectively. Column Job number

(e.g., 2, 3, 4) indicates the number of jobs that were executed in

parallel. For instance, a value of 2 indicates that two instances

of the same job were executed in parallel. As can be seen, pre-

diction accuracy is highest for Logistic regression application

(97%) and lowest for K-means (68%).The predicted execution

time and the actual execution time when we executed four

instances of the same job in parallel are shown in Figure 3,

Figure 4, Figure 5, and Figure 6 for PageRank, K-Means,

Logistic Regression, and WordCount respectively.

Fig. 3: Execution Time Prediction for Four Interfered

PageRank Jobs

Fig. 4: Execution Time Prediction for Four Interfered

K-Means Jobs

Fig. 5: Execution Time Prediction for Four Interfered

Logistic Regression Jobs

Fig. 6: Execution Time Prediction for Four Interfered

WordCount Jobs

B. Interference Among Multiple Jobs of Different Types Start-
ing Simultaneously

In this section, we present the accuracy of prediction while

modeling the interference among n different jobs concurrently,
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TABLE II: Prediction Accuracy for Two Different Jobs

JobName Interfered Job First Stage Whole Job

PR KM 0.91 0.79

LR 0.93 0.81

WC 0.99 0.85

KM PR 0.89 0.80

LR 0.80 0.73

WC 0.75 0.69

LR PR 0.97 0.97

KM 0.73 0.77

WC 0.70 0.75

WC PR 0.96 0.87

KM 0.93 0.84

LR 0.96 0.88

TABLE III: Prediction Accuracy for Three Different Jobs

JobName Interfered Jobs First Stage Whole Job

PR KM, LR 0.96 0.87

KM, WC 0.99 0.90

LR, WC 0.99 0.90

KM PR, LR 0.84 0.79

PR, WC 0.92 0.87

LR, WC 0.83 0.80

LR PR, KM 0.84 0.85

PR, WC 0.87 0.88

KM, WC 0.83 0.84

WC PR, LR 0.93 0.87

PR, KM 0.93 0.87

KM, LR 0.94 0.89

where n was varied between 2 to 4. For example, when n =

2, we execute two different jobs concurrently. The prediction

accuracy while running two different jobs in parallel is sum-

marized in Table II. As shown in the table, there are a total

of 6 combinations to consider. As can be seen, prediction

accuracy ranges between 97% and 69% for the whole job,

and between 99% and 70% for the first stage, which incurs the

bulk of the execution time. For n=3, we execute three different

jobs concurrently. The prediction accuracy while running three

different jobs in parallel is summarized in Table III. As shown

in the table, there are a total of 4 combinations to consider.

As can be seen, prediction accuracy ranges between 90%

and 79% for the whole job, and between 99% and 83% for

the first stage. Finally, for n=4, we execute four different

jobs concurrently. The prediction accuracy while running four

different jobs in parallel is summarized in Table IV. As shown

in the table, there are a total of 1 combination to consider.

As can be seen, prediction accuracy ranges between 99%

and 86% for the whole job, and between 99% and 92% for

the first stage. The predicted execution time and the actual

execution time when we executed four different jobs in parallel

are shown in Figure 7, Figure 8, Figure 9, and Figure 10

for PageRank, K-Means, Logistic Regression, and WordCount

respectively.

TABLE IV: Prediction Accuracy for Four Different Jobs

JobName Interfered Jobs First Stage Whole Job

PR KM, LR, WC 0.92 0.86

KM PR, LR, WC 0.99 0.95

LR PR, KM, WC 0.99 0.99

WC PR, KM, LR 0.95 0.90

Fig. 7: Execution Time Prediction for PageRank Job

Interfered with Other Three Jobs

Fig. 8: Execution Time Prediction for K-Means Job

Interfered with Other Three Jobs

Fig. 9: Execution Time Prediction for Logistic Regression

Job Interfered with Other Three Jobs

C. Interference Among Multiple Jobs Starting at Different
Times

Finally, to test the prediction accuracy of our model where

different jobs may arrive and start at different times, we

use the four Apache Spark jobs and input data set as be-

fore, and start them randomly at different times. To en-

sure that each job will interfere with at least one other

job while executing, we set the starting time for each job

as startingT ime ∈ [minstagetime/10,minstagetime/2],
where minstagetime represents the smallest execution time
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Fig. 10: Execution Time Prediction for WordCount Job

Interfered with Other Three Jobs

TABLE V: Prediction Accuracy for Interference Among Dif-

ferent Jobs Starting at Different Times

Run JobName Starting Time(s) First Stage Whole Job

Scenario - I PR 0 0.91 0.81

KM 38 0.99 0.94

LR 26 0.94 0.94

WC 78 0.83 0.82

Scenario - II PR 91 0.90 0.82

KM 0 0.79 0.77

LR 48 0.87 0.88

WC 53 0.99 0.93

Scenario - III PR 20 0.99 0.90

KM 87 0.98 0.91

LR 0 0.84 0.85

WC 48 0.98 0.91

Scenario - IV PR 77 0.93 0.85

KM 25 0.72 0.71

LR 86 0.99 0.99

WC 0 0.99 0.93

for the first stage among all the jobs. In our case,

minstagetime = 190sec, causing the starting time for dif-

ferent jobs to be between 19 sec and 95 sec.

Given the above range, for evaluation, we randomly pick one

job and start at time 0, and then set the starting time for the

remaining three jobs between 19 sec and 95 sec randomly.

We consider four scenarios where the starting job is different

in each scenario. The prediction accuracy for the whole job

and the while running four different jobs in parallel starting

at different times is summarized in Table V. As shown in the

table, in our evaluation, prediction accuracy ranges between

99% and 71% for the whole job, and between 99% and 72%

for the first stage. The predicted execution time and the actual

execution time for PageRank, K-Means, Logistic Regression,

and WordCount under Scenario - I are shown in Figure 11,

Figure 12, Figure 13, and Figure 14 respectively.

V. DISCUSSION

While our model can predict performance degradation due

to interference among multiple Apache Spark jobs with high

accuracy, we do acknowledge several limitations of our current

work as follows. First, our model assumes that the stages

within a job are executed sequentially and does not consider

Fig. 11: Execution Time Prediction for PageRank Job in

Scenario - I

Fig. 12: Execution Time Prediction for K-Means Job in

Scenario - I

Fig. 13: Execution Time Prediction for Logistic Regression

Job in Scenario - I

Fig. 14: Execution Time Prediction for WordCount Job in

Scenario - I

the possibility of parallel execution, which will require extend-

ing our models. Second, the model was evaluated on 6 node

cluster with 4 concurrent jobs, which is smaller compared to

real-life clusters. Furthermore, the value βn depends on the
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number of concurrent jobs and needs to be calculated (once)

as the number of concurrent jobs grows in a system. However,

we strongly believe that our modeling framework will work

well once the parameters are estimated for different cluster

size and number of concurrent jobs in a system, which we

plan to investigate in our future work.

VI. CONCLUSION

In this paper, to predict the execution time of Apache Spark

job interfered with other jobs, we develop an interference

model. This model combines the execution information and

resource consumption profile for each stage of Apache Spark

jobs to calculate the slowdown ratio resulting from the inter-

ference, and then predict the execution time when interfered

with other jobs. The model is evaluated using four real-life

applications (e.g., Page rank , K-means, Logistic regression,

Word count) on a 6 node cluster while running up to four

jobs concurrently. Experimental results demonstrate that our

model can achieve high prediction accuracy. We strongly

believe that the presented model can be leveraged to design

efficient job schedulers and resource allocation algorithms

for Apache Spark platform, thereby improving the system

utilization significantly.
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