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Abstract—As software evolves, the number of configuration
settings and their usage scenario often change as well, causing
system misconfiguration and performance degradation. How-
ever, no tool exists today that can aid system administra-
tors/developers answering questions such as “What are the new
configuration settings in this new version?”, or “Where and How
is setting X used in the new version?”. As manually investigating
answers to these questions is almost impossible due to the num-
ber of settings and size of the software, this paper investigates
the design of an automated tool (CSMiner) leveraging static
program analysis techniques that helps users to understand
how and where a particular setting is used in a program and
how settings have evolved across different versions of a software
system. CSMiner was applied on four different open source
software packages, namely, Apache Cassandra, ElasticSearch,
Apache Hadoop, and Apache HBase, and CSMiner identified
109 (out of 109), 109 (out of 113), 811 (out of 847), and 160
(out of 167) settings for these software packages respectively.
In each case, CSMiner successfully identified the changes
in configuration settings across multiple versions with high
accuracy.

Keywords-Configuration Analysis; Characteristic Study;
Configuration Evolution; Cloud Platform

I. INTRODUCTION

Modern software often offers a large number of configu-
ration settings that may be tuned to adjust software behavior
or to improve performance [1]. However, as software keeps
evolving, the number of configuration settings and their
usage scenario often change as well (e.g., addition/removal
of configuration settings) [2], making tuning settings ex-
tremely challenging. As reported in [1], 16.7%∼32.4%
of the misconfigurations happen due to system upgrade,
reconfiguration, and/or other tasks that cause changes in
complex systems. Unfortunately, when system administra-
tors/developers are faced with questions such as “What are
the new configuration settings in this new version?”, or
“Where and How is setting X used in the new version?”,
they primarily have to rely on online resources and software
documentation to find answers to such questions [3], [4].
However, such resources often do not document changes
in configuration settings across multiple versions, making
it hard to understand the full implication of upgrading a
software package to a different version.

As investigating answers to the aforementioned questions
manually can be tedious and often error prone, this paper
investigates the design of an automated tool leveraging static
program analysis techniques that can help users understand
how settings have evolved across different versions of a
software package and how it may affect the execution flow
of the software. Specifically, the presented tool can assist
in answering the following questions: (a) Where and how
setting X is used in my program?, (b) Which configuration
settings have been added or removed in the new version?,
and (c) Which configuration settings have been modified
in the new version and how?. To answer question (c), we
consider two types of changes, namely, changes in the set
of methods and/or fields that use a setting, and changes in
the way a setting influences the execution of a program.
To answer the aforementioned questions, in this paper, we
present CSMiner, an automated tool that can analyze a
program, and identify changes in load-time configuration
settings with high accuracy, along with identifying the
type of settings and usage location(s) in the program. To
implement the tool, first, we extend the open source tool
Soot [5] to extract the call graphs from a program that
identifies the execution path(s) that lead to the location in the
program where a particular setting is loaded, which we call
configuration-oriented call graph in this paper. Subsequently,
we used the idea of taint analysis [6] to identify parts
of the code that may be affected by a particular setting,
which is represented as a configuration-oriented data-flow
graph. In this paper, we use the term configuration-oriented
graph (CoG) to refer to the configuration-oriented call graph
and configuration-oriented data-flow graph. Finally, once
the tool constructs the CoG for a particular setting for
different versions of a software package, the tool uses graph
comparison techniques to compare the resulting graphs to
detect changes that may have been made to that setting
across multiple versions.
To evaluate the performance of the tool, we applied our tool
on different versions of four open source large-scale software
packages, namely, Apache Cassandra [7], ElasticSearch [8],
Apache Hadoop [9], and Apache HBase [10]. In each case,
the tool successfully identified the information of configu-
ration settings. Specifically, CSMiner identified 109 (out of
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109), 109 (out of 113), 811 (out of 847), and 160 (out of 167)
settings for Apache Cassandra (version 2.1.8), ElasticSearch
(version 2.1.1), Apache Hadoop (version 2.7.1), and Apache
HBase (version 1.1.1) respectively. Furthermore, CSMiner
successfully identified the number of added settings for all
of these software with a false negative rate between 0%
to 7.5% and the number of removed settings with a false
negative rate between 0% to 9.5%.
The rest of the paper is organized as follows. Prior efforts
that are related to our work are discussed in Section II.
Design and implementation of the tool are presented in
Section III. Section IV presents the result of our study. The
limitations of our current work are discussed in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK

As the number of configuration settings continues to
grow, analyzing and understanding the influence of these
settings on a program is becoming increasingly important.
Not surprisingly, researchers have investigated various ap-
proaches that may help users understand various aspects of
configuration management and tuning in complex large-scale
systems, including misconfiguration detection [11], [12],
troubleshooting [13], [14], [15], [16], [17], and performance
tuning [18], [19]. The problem of misconfiguration trou-
bleshooting in commercial and open source systems has
been studied as well [1].
Among numerous efforts, interestingly, only a handful of re-
cent work focuses on understanding the influence of config-
uration settings on programs. For example, one recent work
applied static source code analysis technique to identify code
fragments that depend on certain configuration settings in
Android applications [20]. Another work explored the idea
of static extraction of program configuration settings [21] to
categorize configuration settings into different groups based
on their types. One of the recent works, that is closest in
spirit to our work, manually studied real-world configuration
changes in large scale software systems [2].
In contrast to prior efforts, our work aims to help system ad-
ministrators/developers to gain insights regarding the evolu-
tion of configuration settings in software systems leveraging
static source code analysis techniques [22], [23], [5] such
as call graph construction and taint analysis by automat-
ically identifying changes in configuration settings across
multiple versions, and complements prior efforts that focus
on identifying the type of configuration settings [21] and
attempt to explain which code fragments depend on which
configuration settings [20].

III. APPROACH

In this section, we first introduce the necessary back-
ground concepts regarding configuration-oriented graph, and
then describe the design and implementation details of our
tool. The details are below.

A. Background

In our work, to study the evolution of configuration settings
across multiple versions, we define a configuration-oriented
graph (CoG) as a directed graph that contains two parts,
namely, the Configuration-oriented Call Graph (CCG) and
the Configuration-oriented Data-Flow (CDF) graph.
The Configuration-oriented Call Graph (CCG) for a setting
“x” includes all execution paths from starting points of a
program to all the methods in which configuration setting
“x” gets loaded (i.e., configuration setting loading method).
In other words, CCG for a setting “x” is a subgraph of
the call graph for the whole program and only contains
methods related to configuration setting “x”. CCG can be
used to answer the question “Where is setting X loaded
in my software and what paths lead to that location from
starting points?”. In this work, starting points include the
entry points of a program (e.g., main function), and any
other methods which can be invoked externally (e.g., through
API) and can reach the loading method of setting “x”.
Additionally, if a configuration setting is assigned to a field
of a class, we consider the class’s constructor as a loading
method as well. To increase the accuracy of the graph, we
also consider all methods that use the assigned field of
a setting as the loading methods and generate paths from
starting points to those methods.
The Configuration-oriented Data-Flow graph (CDF), on the
other hand, represents the execution flow after a setting “x”
gets loaded in the program. CDF assists users to identify the
code fragments that depend on a configuration setting, and
helps answer questions such as “Where and How is setting
X used in my software?” (e.g., which classes and which
methods use setting X) or “What is the role of setting X in
my software?” (e.g., setting X is used as a control variable,
or as a parameter of a method).

01: public static void main(String[] args) {

02:      runTaskA();

03: }

04: public static void runTaskA() {

05: Configuration conf = new Configuration();

06: int nbStrings = conf.getInt(“settingA”, 1);

07:      String[] array = new String[nbStrings];

08: boolean isCorrect = conf.getBoolean(“settingB”, true);

09: if (isCorrect) {

10: performJob();

11: }

12: }

Figure 1: A simple example demonstrating the use of
configuration settings. The configuration read functions

getInt and getBoolean are borrowed from Apache Hadoop.

A simplified example of a CoG (that includes both CCG and
CDF) is shown in Figure 2, and the corresponding source
code is illustrated in Figure 1. The CCG includes the execu-
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main()

line: 1

runTaskA()

line: 2

getBoolean(“settingB”, true);

line: 8

if Statement 

line: 9

CCG CDF

Figure 2: The CCG of the CoG (left) and the CDF of the
CoG (right) for the configuration setting “settingB”.

tion path from function main() (line 01), which is the starting
point of the program, to function runTaskA() (line 04), which
is the loading point of two configuration settings, namely,
“settingA” (line 06) and “settingB” (line 08). The CCG in
this case will be same for these configuration settings. As
these settings affect the execution differently once loaded
during program execution, the CDFs for these two settings
are going to be different. Due to space limitation, we only
show the CDF for “settingB” in Figure 2 where this setting
is used as a conditional variable in an if statement.

B. Constructing the Configuration-oriented Graph

Before the tool can construct the Configuration-oriented Call
Graph (CCG) for a given software package, we first need
to generate the list of configuration read functions (i.e.,
configuration loading APIs) and provide that list as input
to the tool. To understand how configuration settings are
loaded in software, we manually studied 10 open source
software packages (listed in Table I) and identified several
approaches that are commonly used as follows.

Approach Software Name
Approach 1 Cassandra, Voldemort1

Approach 2 Hadoop, HBase2, Chukwa3, Derby4, Flume5

Approach 3 ElasticSearch6, JMeter, CloudStack7

Table I: Table of open source software and their
configuration loading approaches.

Approach 1: One of the common approaches for loading
configuration settings in a program is where each setting
has its own get and set function or a pair of get and
set function for a category of settings. An example of
this approach is shown in Figure 3. In this example, the
configuration setting “preheat kernel page cache” is read to
the variable preheat kernel page cache of class Config and
is accessible through the API shouldPreheatPageCache() of
class DatabaseDescriptor.

1http://www.project-voldemort.com/voldemort/
2https://hbase.apache.org/
3http://chukwa.apache.org/
4http://db.apache.org/derby/
5http://flume.apache.org/
6https://www.elastic.co/products/elasticsearch
7https://cloudstack.apache.org/

Class org.apache.cassandra.io.sstable.SSTableReader

if (DatabaseDescriptor.shouldPreheatPageCache() && fd > 0)

CLibrary.preheatPage(fd, entry.getValue().position);

Configuration name: "preheat_kernel_page_cache"

Class org.apache.cassandra.config.DatabaseDescriptor   

public static boolean shouldPreheatPageCache()

{

return conf.preheat_kernel_page_cache;

}

Class org.apache.cassandra.config.Config

public boolean preheat_kernel_page_cache = false;

Figure 3: Example configuration setting in Cassandra.

Approach 2: In this approach, an API is used to re-
trieve all settings that share a common property such as
type (e.g., integer). For example, in Figure 4, the setting
“hadoop.security.group.mapping.ldap.ssl” has type boolean
and is loaded by an API named getBoolean() which has the
following parameters: name of the setting and the default
value.

Class org.apache.hadoop.security.LdapGroupsMapping

public static final String LDAP_CONFIG_PREFIX = 

"hadoop.security.group.mapping.ldap";

…

public static final String LDAP_USE_SSL_KEY = LDAP_CONFIG_PREFIX + ".ssl";

…

useSsl = conf.getBoolean(LDAP_USE_SSL_KEY, LDAP_USE_SSL_DEFAULT);

Configuration name: "hadoop.security.group.mapping.ldap.ssl"

Figure 4: Example configuration setting in Hadoop.

Approach 3: Finally, the third approach is to use the Java
built-in Properties class to load settings. For example, in
case of JMeter [24], two methods named getPropDefault()
and getProperty() are used to read configuration settings.
In particular, the method getPropDefault() is a polymorphic
method which has format Type getPropDefault(String prop-
ertyName, Type propertyType) in which Type can be int,
boolean, long, or String.

Once we generate the list of configuration loading APIs and
provide it as input to the tool, to construct the CCG for each
individual setting, the tool first identifies the configuration
loading points for a particular setting. Next, for each of
these configuration loading points, the tool finds all the
methods that invoke it, and then recursively back tracks until
it reaches the starting point(s) of the program. Please note
that, there can be multiple such CCGs for each setting as the
same setting may be loaded in different parts of a program.

Once the CCG is constructed, next, to construct the
configuration-oriented data-flow graph (CDF) which is a
directed graph, the tool considers each configuration setting
loading point as the source (i.e, indegree equals 0) and
constructs one CDF starting from each of the loading points.
For instance, if there are two different points in the software
where setting “x” gets loaded, there will be two different
CDFs for “x”. As a configuration setting can be assigned
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Figure 5: The architecture of CSMiner.

to a variable, a field, or passed to a method as a parameter,
the tool considers all these possibilities while constructing
the CDF. The sinks (i.e., outdegree equals 0) of the graph
are determined based on how we describe the flow functions
for each individual flow edge. In the scope of this work, to
keep the size of the CDF tractable, we do not explore all
transitive effects of configuration settings, and only retrieve
information regarding how a configuration setting is used
within a program. Specifically, when a configuration setting
is passed as a parameter of a method that belongs to a third
party library, we do not explore how it is used within that
library. However, if a setting is passed as a parameter of a
method that belongs to the program being analyzed, we do
explore further.

C. Implementation of the Tool

The architecture and the execution flow of the tool is
illustrated in Figure 5. As shown in the figure, the tool
first builds the CoG (Figure 5 (a)) for each setting for
each version of a software package and then compares the
constructed CoGs (Figure 5 (b)) to identify the changes
regarding configuration settings of that software package
across different versions. In Figure 5 (a), input to the tool
includes the list of configuration loading APIs, the list of
starting points, and the program binary files. These configu-
ration read functions are usually “well-defined” functions
as explained in the previous subsection (III-B) and also
discussed in [21]. The starting points are usually entry points
or public APIs which are available online (e.g., Hadoop8).
Next, once the graphs are generated by the modules in
Figure 5 (a), the Configuration-oriented Graph Comparison
Module (Figure 5 (b)) reads and compares them to output
the list of changes. The implementation details are described
as follows.

Configuration-oriented Call Graph Construction Module.
To implement the module that constructs the CCG, we
leverage Soot [5], which is an open source framework

8https://hadoop.apache.org/docs/r2.7.1/api/

for analyzing Java source code or Java bytecode. Due to
this flexibility, CSMiner can be easily applied to programs
written in other languages such as Scala (e.g., Apache
Spark9) that are compiled to Java bytecode. In Soot, we
can use a method’s signature to query information related
to that method from the call graph. Specifically, we can
use a target method’s signature to get the list of methods
that call that method. Using this feature of Soot, CSMiner
first constructs the call graph as a bi-directional graph, and
then applies the Depth-First Search algorithm starting from
the setting loading points to traverse backwards to identify
the starting points of the program. In our study, each of
the software has multiple starting points (e.g., more than a
dozen main() functions for Hadoop and HBase). Also, the
software we analyzed contain significant number of public
methods such as remote procedure calls (RPCs), which
may not be reachable from a given set of starting points
but can be accessed by external invocations. To deal with
this case, we applied the idea described in [13]. In short,
CSMiner generates Java code that instantiates an object of
the corresponding classes of those methods in the main()
function. It then invokes these public methods by the created
object. There are cases where a method m 1() of the host
program is called within another method m 2() and the
method m 2() is used by external libraries. For example,
a method is called by method run() of class Thread and
the method run() is used by other functions in the same
program or in external libraries. To avoid the explosion of
the graph, we eliminate all calls made by external libraries.
As all methods in a program have the common prefix in their
signature, we use that prefix to detect whether a method
belongs to the host program or not. For example, we use
the prefix “org.apache.cassandra” for Apache Cassandra and
“org.apache.hadoop” for Hadoop. The constructed call graph
is the CCG which the tool can output by applying the Depth-
First Search algorithm which begins from starting points to
traverse to all loading points.
Data-Flow Construction Module.
To implement the module that constructs the CDF, we
leverage the data-flow tracking component FlowDroid [6]
framework for performing taint analysis for Java bytecode
programs, which implements the IDFS/IDE framework [22]
for data-flow analysis for Java using Heros [23]. Specifically,
for a given list of source and sink nodes, FlowDroid outputs
a list of possible paths from source to sink nodes. In
particular, in case of taint analysis, if we know the source
and the sink node, then FlowDroid can help us find whether a
path exists from the source to the sink node or not. However,
when we build a CDF, as we only know the “source” node,
which is the loading point of a configuration setting, we
extended FlowDroid by applying the data-flow analysis start-
ing from the source nodes and continue the analysis along

9http://spark.apache.org/
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all possible edges as long as there is a target node which
can be reached from the source node. We implemented a
dedicated class which receives all taints propagated by the
IDFS problem solver, and analyzes these taints to identify
different kinds of statements (e.g., if statement, invocation
statement) as well as which statements are related to the
setting being analyzed. CSMiner then applies the Depth-
First Search algorithm on the constructed inter-procedural
control flow graph to output the CDF.

D. Identifying Changes in Configuration Settings across
Multiple Versions

To detect configuration settings that are added, removed,
or modified in the new version of a software package,
first, we use CSMiner to extract the list of configuration
settings for each version by analyzing the program binary
file. For example, in case of Hadoop, CSMiner deter-
mines the value of the first parameter of the get function
to get the name of the passed configuration setting. As
shown in Figure 4, the name of the configuration set-
ting “hadoop.security.group.mapping.ldap.ssl” is actually the
value of the String LDAP USE SSL KEY. Please note that,
if the names of settings are dynamically constructed as
shown in Figure 4, the constant propagation mechanism in
Soot helps to get its full name.

input: CoG1, CoG2 of a configuration setting
output: List of modifications made to the configuration

setting
1 Function compareCoG
2 Report all starting points appear in CCGs of CoG1

but do not appear in CCGs of CoG2 and
otherwise;

3 foreach source s in CDF1 of CoG1 do
4 if ∃ a CDF2 of CoG2 has same source s then
5 compareCDF(CDF1, CDF2, s);
6 else
7 report the difference at source s;
8 end
9 end

10 end
Algorithm 1: Configuration-oriented graph comparison
algorithm.

Once we extract the name of the settings, we compare the
lists of names from the old and new version, and have
three cases to consider as follows. First, if a name appears
in the list of the new version and does not appear in the
list of the old version, then it is considered as a newly
added configuration setting. This will help to answer the
question “What are the new configuration settings in this
new version?”. Second, if a name appears in the list of
the old version and does not appear in the list of the new
version, then it is considered as a removed configuration

input: CDF1, CDF2 of the configuration setting, s
output: List of modifications made to the configuration

setting on the data-flows
11 Function compareCDF
12 P1 ← all paths from the source s to sinks of CDF1;
13 P2 ← all paths from the source s to sinks of CDF2;
14 foreach path p1 in P1 do
15 if ∃ a path p2 in P2 has same sink with p1 then
16 check the common internal nodes and

report the difference (if any);
17 else
18 report the difference;
19 end
20 end
21 end

Algorithm 2: Configuration-oriented data-flow graph com-
parison algorithm.

setting. Finally, the names that are common across the old
and new version (the common list), those represent both
the unmodified and the modified configuration settings. To
answer questions such as “Which configuration settings are
modified?” and “How are configuration settings modified?”,
we compare the configuration-oriented graphs for each set-
ting in the common list for both versions of a program. The
algorithm for graph comparison is illustrated in Algorithm 1.
Two parts of a CoG (i.e., CCG and CDF) are compared
separately as follows. First, we compare the CCGs from two
different versions to find whether execution paths leading to
a configuration setting are being added/removed in the new
version (line 2). Next, we compare the CDFs to identify
whether there is any change regarding how a setting may
affect the execution flow of the software. The algorithm that
compares the CDFs is shown in lines 3-9 of Algorithm 1 and
in Algorithm 2. The algorithm is based on the fact that, if a
path (i.e., data-flow) appears in the graph of the old version
but does not appear in the graph of the new version, then
the corresponding use of the setting has been removed in
the new version. In contrast, if a path appears in the graph
of the new version but does not appear in the graph of the
old version, then a new usage scenario has been added in
the new version. Please note that, in our work, a change in
the name of methods is also viewed as a modification in the
usage scenario.

IV. EVALUATION OF THE TOOL AND EMPIRICAL RESULT

We applied CSMiner to study the evolution of config-
uration settings in four large scale open source software
packages. All experiments were conducted on a PC with
i5-3450 CPU and 16 GB of RAM. As multiple versions are
available for the software listed in Table II, and all of them
are shipped with large number of configuration settings, we
consider them suitable for our study. While we studied
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Program Years LoC Versions Boolean Integer Long Double Float String Other No. of
settings

Cassandra 2 106,885 1.2, 2.0, 2.1 12 45 11 3 0 25 13 109

Elastic 1 273,416 1.5, 1.7, 2.1 14 19 4 2 0 42 28 109

Hadoop 2 1,386,829 2.2, 2.6, 2.7 94 295 156 3 26 181 56 811

HBase 1 732,522 0.90, 0.98, 1.1 32 59 21 3 19 17 9 160

Table II: The software systems that were studied and their characteristics. Column “LOC” lists number of lines of code.

Program No. of False Negative (%)
documented settings

Cassandra 109 0
Elastic 113 3.5
Hadoop 847 4.3
HBase 167 4.1

Table III: Percentage of settings missed by the tool.

multiple versions of each of these software in our study, due
to space limitation, in all tables in this section, we only list
the information regarding the configuration settings for the
latest version. In the tables presented in this section, Elastic
refers to ElasticSearch.
Each project in Table II is highly configurable, and ships
with hundreds of settings. The table also presents the number
of settings of each type (e.g., boolean, integer, etc.) for each
software for the latest version. The column titled “Other”
is used to list the number of settings that use complex
data structure. The rate of false negative for our tool is
shown in Table III in which we compared the extracted list
of configuration settings of a software package against the
list of configuration settings retrieved from the software’s
official documentation. As can be seen, even for Hadoop,
that has a total of 847 documented settings, our tool missed
only 4.3% of them, and missed none in case of Cassandra.
Table IV shows the number of newly added, removed, and
modified configuration settings for each software in order of
version release (e.g., Cassandra version 1.2.19 vs. version
2.0.7, version 2.0.7 vs. version 2.1.8). As can be seen,
configuration settings are changed in every new version for
each of these software.
The rate of false negative for change detection for different
software is listed in Table V. As can be seen, CSMiner
fails to identify less than 10% of the newly added settings.
The rate of false negative for deleted settings is less than
10% for all cases. The reasons behind these false negative
cases will be explained in Section V. The time taken by
the tool to analyze these software packages is listed in
Table VI. As expected, analyzing Hadoop takes longest
due to its large size. The size of the constructed CCGs is
compared against the complete graph for each program and
is presented in Table VII. As can be seen, the size of the
CCG is significantly smaller compared to the complete call
graph for the whole program.
Table VIII shows the runtime of the graph comparison

algorithm that identifies the changes in configuration set-
tings across two different versions (i.e., time for generating
Table IV).

A. Lessons Learned

1) The reasons behind the configuration change varies
widely: In our study, we observed that a setting is added
or removed not always to add/remove a software feature,
but sometimes to fix bugs, or to improve the reliability
and performance of a software. For example, when a
new module was added into ElasticSearch 1.7.0, a setting
named “index.unassigned.node left.delayed timeout” was
introduced to allow users to tweak the performance of this
module10. In Hadoop 2.6.0, settings “fs.s3a.threads.max”,
“fs.s3a.threads.core”, “fs.s3a.threads.keepalivetime”, and
“fs.s3a.max.total.tasks” were introduced to avoid
OutOfMemoryError bug in S3A FileSystem11, which occurs
in the earlier versions. In HBase version 1.1, users can use
the new setting “hbase.cells.scanned.per.heartbeat.check” to
control the performance of the scan operation (i.e., a step
in a querying process)12.

2) Changes in configuration settings are not always re-
flected in the code: We observed that, even after a config-
uration setting is removed, the code related to that setting
may not be removed in the new version of the software.
Additionally, while some functions that read deleted settings
are marked as deprecated, some are not. For example, func-
tion getIndexInterval() in Cassandra 2.1.8 that reads setting
“index interval” is marked as deprecated while function
getCommitLogPeriodicQueueSize() that loads the deleted
setting “commitlog periodic queue size” is not. Such in-
consistency can lead to confusion and erroneous use of
settings.

3) Changes in software due to changes in settings can be
hard to understand and follow: From our study, we conclude
that, without an automated tool, it is non-trivial to keep track
of the changes in code base due to the frequent addition, re-
moval, and/or modification to classes that use configuration
settings. For example, class ScheduledRangeTransferExecu-
torService, which uses the setting “num tokens”, is added in
Cassandra version 2.0.7, but later removed in version 2.1.8.

10https://www.elastic.co/guide/en/elasticsearch/reference/2.0/delayed-
allocation.html

11https://wiki.apache.org/hadoop/AmazonS3
12https://blogs.apache.org/hbase/entry/scan improvements in hbase 1
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Program Cassandra Cassandra. Elastic Elastic Hadoop Hadoop HBase HBase
(1.2-2.0) (2.0-2.1) (1.5-1.7) (1.7-2.1) (2.2-2.6) (2.6-2.7) (0.90-0.98) (0.98-1.1)

No. added settings 8 25 33 21 118 86 98 19

No. removed settings 8 8 22 68 19 19 8 10

No. modified settings 25 12 15 22 24 14 26 17

Table IV: The summary of configuration setting changes across multiple versions.

Program Rate of False Negative Rate of False Negative
for New Settings (%) for Removed Settings (%)

Cassandra (1.2-2.0) 0 0
Cassandra (2.0-2.1) 0 0

Elastic (1.5-1.7) 5.7 0
Elastic (1.7-2.1) 4.5 2.8
Hadoop (2.2-2.6) 5.6 0
Hadoop (2.6-2.7) 7.5 9.5

HBase (0.90-0.98) 2.9 0
HBase (0.98-1.1) 5.0 9.0

Table V: The percentage of changes the tool missed.

Program Execution time (minute)
Cassandra 25

Elastic 29
Hadoop 52
HBase 38

Table VI: Runtime of the tool.

Because of this, the usage scenario of setting “num tokens”
in version 1.2.19 and 2.1.8 is different compared to version
2.0.7. In another example, the setting “partitioner” is used
by a class named AntiEntropyService in Cassandra version
1.2.19, then the name of the class was changed to Validator
in Cassandra version 2.0.7. In Cassandra version 2.1.8, the
class Validator still exists but the setting “partitioner” has
been removed from the class. While the underlying reasons
behind such inconsistency could not be confirmed, our tool
can automatically identify such evolution across multiple
versions, making system administrators aware of potential
issues while upgrading to a different version.

4) Modification in configuration settings dominates the
type of change: From our study, we observed that the
change in the way an existing setting is used and/or loaded
outnumbers the number of addition/deletion of settings. The
number of such changes in our study is listed in Table X.
We categorize such changes into three groups as follows:
if there is a change in the CCG for a setting, that is listed
under row “CCG”, if there is a change in the CDF for a
setting, that is listed under row “CDF”, and if for a setting
both CCG and CDF is changed in the new version, that is
listed under row “CCG and CDF”. For example, if a new
code branch is added in the new version that leads to a
configuration setting, that is considered a change in CCG. If
a code fragment is added in the new version of the program
that uses a configuration setting as a predicate variable, that
is considered a change in the CDF.
In Table X we can see that most of the changes
occur in CDF, which implies that the same con-

Program Size of the Size of the
constructed CCG complete graph

Cassandra 3,253 151,260
Elastic 1,116 93,674
Hadoop 6,718 823,002
HBase 5,380 521,168

Table VII: Size of the constructed CCG vs. size of the
complete graphs.

Program Execution time (sec)
Cassandra 210

Elastic 210
Hadoop 240
HBase 225

Table VIII: Time to populate Table IV.

figuration setting is used in different ways in the
new version. For example, in HBase, the setting
“hbase.regionserver.global.memstore.upperLimit” is used by
class MemStoreFlusher in version 0.90, class HBaseCon-
figuration and MemStoreFlusher in version 0.98, and class
HeapMemorySizeUtil in version 1.1. This finding under-
scores the need for an automated tool that can assist ad-
ministrators/developers in identifying and understanding the
changes in configuration settings across multiple versions.
Finally, we also looked into whether the type of a configu-
ration setting is changed across versions or not (e.g., change
to long from integer). However, we could not find any such
cases in our case studies.

5) Changes in configuration settings are not always re-
flected in the documentation: Finally, in this work, we
identified that developers often do not document the changed
settings. The number of changed configuration settings
which are not documented for each software is listed in
Table XI. This finding of our is consistent with prior work
that also reported the lack of documentation for configu-
ration settings [21]. In addition to inconsistent documenta-
tion, a number of newly added configuration settings are
not described in the change logs or release notes of new
versions either. The changes made to configuration settings
are rarely reported and we cannot find any website which
lists the changed settings after a new version of a software is
released. The lack of documentation of configuration settings
is described in the Apache Hadoop issue tracker log as
well: “added dfs.web.authentication.filter but this doesn’t
appear to be documented anywhere.”13 We also noted that

13https://issues.apache.org/jira/browse/HDFS-7033
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Program Cassandra Cassandra. Elastic Elastic Hadoop Hadoop HBase HBase
(1.2-2.0) (2.0-2.1) (1.5-1.7) (1.7-2.1) (2.2-2.6) (2.6-2.7) (0.90-0.98) (0.98-1.1)

No. added settings 8 25 35 22 125 93 101 20

No. removed settings 8 8 22 70 19 21 8 11

Table IX: The summary of configuration setting changes extracted from documented settings across multiple versions.

Program Cassandra Cassandra. Elastic Elastic Hadoop Hadoop HBase HBase
(1.2-2.0) (2.0-2.1) (1.5-1.7) (1.7-2.1) (2.2-2.6) (2.6-2.7) (0.90-0.98) (0.98-1.1)

CCG 6 3 4 8 8 3 7 4

CDF 12 6 5 8 11 6 12 10

CCG and CDF 7 3 6 6 5 5 7 3

Table X: Type of configuration setting modifications across multiple versions.

a setting might be introduced in an early version but is
only documented in a later version of the software. For
example, while the setting “dfs.datanode.scan.period.hours”
was added in Hadoop version 2.2 and earlier versions, the
description of that setting is added in Hadoop version 2.7.
Please also note that, as the modification of configuration
settings are often not documented, developers often need to
manually search the property file of the software, the git
commit log, or the Q&A sites such as Stack Overflow to
find the changes. However, users can only search for the
information regarding a setting only if they know its name,
which is not available to begin with, which is addressed
by our tool as well that reveals the newly added settings
automatically.

Program Number of
undocumented settings

Cassandra 4

Elastic 3

Hadoop 5

HBase 3

Table XI: The number of undocumented changed configu-
ration setting.

V. DISCUSSION AND THREATS TO VALIDITY

While our tool was able to identify the changes in config-
uration settings across multiple versions with high accuracy,
in this section, we would like to highlight the key limitations
of our work as follows.
First, due to the nature of large scale software (e.g., use of
third party libraries), it is possible that the CoG may not be
complete, and miss a small number of cases. Specifically,
as the accuracy of the CoG depends on the accuracy of the
list of starting points that is used to construct the call graph,
if the starting point that leads to the configuration loading
point is not reachable, it can lead to an incomplete CoG.
To address this (to some extent), we turned on the setting
“all-reachable” of Soot tool so it considers all methods of
a program to be reachable and includes them in the call

graph construction phase. However, as many starting points
are invoked externally from client side in system software
like Cassandra or Hadoop, this may not work in those cases.
For example, a function can be invoked via RPC protocol
(e.g., Apache Thrift [25]), or called directly by using public
APIs. Although we have created fake starting points to
invoke all RPC protocol methods to address this issue, our
approach may still miss load points of some configuration
settings. This is one of the main reasons which causes
false negative cases as described earlier. However, given that
the number of such special cases is small (based on our
experience), we strongly believe that our tool will still cover
most of the cases, which is demonstrated by our thorough
evaluation. Furthermore, due to the possibility of incom-
plete documentation, it was not possible to claim identified
settings that are not listed in the official documentation as
false positive in our study. Therefore, in this paper we only
present the rate of false negatives to show what percentage of
documented configuration settings the tool can successfully
identify automatically. Please note that, while our tool can
identify the settings and changes across multiple versions
effectively, it cannot make any recommendation regarding
the optimal combination of settings, which is a different
research problem.
Finally, while we studied four large-scale open source
projects, all the findings may not be equally applicable for
all open source projects. However, we strongly believe that
widely used open source software such as Hadoop and Cas-
sandra with dozens of active developers are representative
of large-scale open source software, making our findings
compelling.

VI. CONCLUSION

This paper presents CSMiner, a tool to identify changes
of configuration settings across multiple versions of large
scale software, and introduces the concept of configuration-
oriented graph that helps users answering questions such as
“Where and How setting X is used in my program?”, “Which
configuration settings have been added or removed in the
new version?”, and “Which configuration settings have been
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modified in the new version and how?”. Extensive evalua-
tion of the tool using four different open source software
packages is presented to demonstrate the effectiveness of
the presented approach.
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