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Abstract—In large-scale data stream management systems,
sampling rate of different sensors can change quickly in response
to changed execution environment. However, such changes can
cause significant load imbalance on the back-end servers, leading
towards performance degradation and data loss. To address this
challenge, in this paper, we present a model-driven middleware
service (i.e., Arion) that uses a two-step approach to minimize
data loss. Specifically, Arion constructs models and algorithms for
overload prediction for heterogeneous systems (where different
streams can have different sampling rates and message sizes)
leveraging limited execution traces from homogeneous systems
(where each stream has the same sampling rate and message
size). Subsequently, when an overload condition is predicted
(or detected), Arion first leverages the a priori constructed
models to identify the streams (if any) that can be split into
multiple substreams to scale up the performance and minimize
data loss without allocating additional servers. If the software
based solution turns out to be inadequate, in the second stage,
the system allocates additional servers and redirects streams to
stabilize the system leveraging the models. Extensive evaluation
on a 6 node cluster using Apache Cassandra for various scenarios
shows that our approach can predict the potential overload
condition with high accuracy (81.9%) while minimizing data loss
and the number of additional servers significantly.
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I. INTRODUCTION

With significant advancement in wired and wireless sen-

sor technologies and wide adoption of Internet connectivity,

researchers are exploring increasingly complex and large-

scale applications such as battlefield monitoring, smart grid

monitoring, infrastructure and asset management, and IoT

applications [1], just to name a few. Due to the nature of

these applications, design of efficient data stream management

systems is becoming increasingly important to ensure the

reliability and performance of such systems. However, in

these systems, rapid changes in the execution environment

can require to vary the sampling rates of different groups

of sensors deployed in the field, causing significant load

imbalance on the data stream management systems, leading

towards performance degradation and data loss [2].

Among various approaches that attempted to address this

(or similar) problem in the past, common strategies include

resource allocation based on execution time estimation [3],

future resource requirement prediction based on past execution

behavior [2], and optimization techniques for resource provi-

sioning targeting specific objectives (e.g., QoS requirements,

SLA) [4]. Load shedding technique [5] is another common

approach that is used to mitigate overload conditions in

systems where data streams are processed on the fly [6], [7].

However, this is ill suited especially for systems where data

needs to be stored for future analyses [8], [9].

While prior efforts present different mechanisms to pre-

dict/detect overload conditions and allocate resources accord-

ingly, they often either allocate additional servers or drop

packets to deal with the overload conditions. However, we

would like to argue that these approaches are often not optimal

and lead to additional hardware resources and/or data loss

even when it is not needed. Specifically, in our investigation,

we identify that the interaction between the software and

hardware can be quite complex, and it is often the software

that is causing the bottleneck, and should be addressed first

before resorting to hardware based solutions to ensure efficient

resource utilization.

Towards that, in this paper we present Arion, a model-driven

middleware service that integrates a software based approach

with a hardware based solution to minimize data loss while

minimizing the number of additional servers. Specifically, in

the first step, Arion leverages a priori models developed based

on limited execution traces from homogeneous systems (where

each stream has the same sampling rate) to predict potential

overload conditions in heterogeneous systems (where different

streams have different sampling rates), and attempts to address

the overload condition by selectively splitting streams first.

If splitting streams turns out to be inadequate, at the second

stage, it allocates additional servers to further minimize po-

tential data loss. Our extensive evaluation on a 6 node cluster

demonstrates that the integrated approach can reduce the data

loss rate significantly (< 3%) while reducing the number of

additional servers compared to the hardware based solution.

II. DESIGN OF THE MIDDLEWARE SERVICE

In large-scale streaming applications (e.g., IoT applications),

data is often generated by heterogeneous sensors and is repli-

cated across multiple servers for reliability. In such systems,

assuming that a given replicated stream storage system with

replication factor of r and n different streams is currently

stable, one of the key questions that needs to be answered

in real-time is “Will the system become overloaded if the

number of streams and/or sampling rates change?” Once a

system experiences such changes in execution conditions and

the current system is inadequate to handle the changed load,

it needs to adapt quickly to mitigate the situation.
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Fig. 1: System architecture.

As the execution condition can change quickly in such sys-

tems, any middleware service targeting to minimize data loss

should satisfy two key requirements. First, it is imperative for

the service to be able to predict potential overload conditions

in advance so that the system can act in time to mitigate

the possible negative effects of such overload conditions (e.g.,

minimize data loss). Second, in addition to be able to predict

the overload condition, the middleware service needs to be

able to automatically react to the changes to minimize data

loss while minimizing the resource overhead.

To address these challenges, in this paper, we use a com-

bination of proactive and reactive approach to minimize

data loss caused by sudden changes in execution conditions.

Specifically, the proactive approach uses a priori constructed

models to predict potential overload conditions. However,

as the prediction models may mispredict, we complement

the proactive approach with a reactive approach that runs a

process in the background monitoring the run time condition

to detect overload conditions. Finally, if an overload condition

is predicted (or detected), the system uses a two-step solution

to minimize the negative effect of the overload condition.

To demonstrate our approach, we built a middleware service

(i.e., Arion) as shown in Figure 1. In this framework, the

sensor streams are simulated where the sampling rate can be

changed in real-time to generate different workload conditions

during execution. In Arion, we have four modules, namely,

the data rate management module, the overload prediction
module, the drop rate monitoring module, and the overload
handler module.

In this framework, we assume that the data rate management
module is aware of the changes in sampling rates in the

system and triggers the overload prediction module whenever

a change happens. The overload prediction module applies

the trained models to predict whether the new combination of

streams, sampling rate and message size will cause overload

or not, and triggers the overload handler module if needed.

However, as the model is not perfect and may fail to identify

a potential overload condition (i.e., false negatives), the drop
rate monitoring module is used to monitor the system to see

whether there are any dropped messages, which can trigger

the overload handler module as well. The overload handler
module uses a two-step approach to minimize data loss. Specif-

# Streams 1, 2, 4, 8, 10

Message Size (byte) 1, 100, 300, 500, 1000

Replication Factor 1, 2, 3

TABLE I: Number of streams, message sizes, and replication factor
of the system used in the experiments.

ically, first it leverages the constructed models to identify the

streams (if any) that can be split into multiple substreams

to scale up the performance and minimize data loss without

actually allocating additional servers. If the software based

solution turns out to be inadequate, in the second stage, the

system resorts to traditional resource allocation scheme where

it allocates additional servers and redirects streams to stabilize

the system. During normal operation, the overload handler
module does not change any data streams and therefore works

just as a data forwarding module.

The details of our approach are presented below.

A. Constructing Models for Overload Prediction

In this work, for modeling purpose, we consider two scenarios.

In the first scenario, all the streams have the same sampling

rate rate and message size msg size, which we refer to as

the “homogeneous” system. In the second scenario (the more

realistic one), different data sources have different sampling

rates and message sizes, which we refer to as the “heteroge-

neous” system. To keep the training phase tractable, we first

build prediction models for homogeneous systems, and then

apply the constructed models to predict the performance of

heterogeneous systems.

To generate the models for predicting the system capacity for a

given load condition, in this work, we consider three variables

that can change during run-time (i.e., number of streams,

sampling rate, and message size for each stream), and a fourth

variable that is usually set at the beginning (i.e., the replication

factor). As each variable can have a large number of possible

values, leading to an exponential number of combinations, for

tractability, we only choose a subset of the combinations and

use that information to build models that can be used to predict

the potential overload condition in real-time.

To collect the training data, we run experiments with the

values listed in Table I. All experiments presented in this

paper were performed on a cluster of 6 nodes, where each

node is equipped with Intel E5-2440 CPU and 32GB of RAM

memory. The network bandwidth is 1 Gbps. We used Apache

Cassandra1 version 2.1.8, and its corresponding client Datastax

Java Driver2 version 2.1.8. We used a ramp up method where

we ran each experiment for a predefined amount of time (τ
minutes) to collect data. In our case, we ran experiments with

different amounts of time (3 minutes, 10 minutes, 30 minutes)

and determined that 3-minute run was enough to capture the

characteristics of the system. In each experiment, n clients

(i.e., # streams in Table I) push data to the storage system

concurrently where each client pushes data to an assigned

row in the database table. To determine the maximum data

1http://cassandra.apache.org/
2https://github.com/datastax/java-driver
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Fig. 2: Maximum data rate for different number of streams. The data
rate is in messages/second, the message size is in byte.

rate that the system can handle from n streams, we varied

data rate, the value of msg size (message size in Table I),

and the value of r (replication factor in Table I). At the end

of each run, we checked how many messages were stored in

the database. If client j pushes data at a rate of ratej for τ
minutes, the total number of messages expected in the storage

system is Σmsg = ratej ∗τ ∗60 (messages). If the total number

of messages (Ωmsg) in the corresponding row of that client in

the storage system is smaller than Σmsg , we know that the

storage system is not able to handle data rate greater than or

equals to ratej . The drop rate of the system in that case will be
Σmsg−Ωmsg

Σmsg
(%). Over multiple iterations of increasing ratej ,

we determine the maximum data rate for a combination of

condition that can be handled by the system. We repeated each

experiment 5 times and set the maximum data rate equal to the

average of those 5 runs. Figure 2 shows the maximum data rate

that the system can handle for different number of streams,

message sizes, and replication factor. Each sub-figure (from

top to bottom) is generated for a specific number of streams. In

each sub-figure, each plot (from left to right) is generated for

a different replication factor. In each plot, each bar shows the

corresponding maximum data rate for a specific message size.

From the figure, we can see that, as we increase the number

of streams, the maximum data rate reduces significantly (e.g.,

45,000 messages/second for a single stream compared to 7,000

messages/second for 10 streams with a message size of 100

bytes). For each value of replication factor, when we increase

the message size (the left bar to the right bar in each plot),

the data rate also reduces quickly.

In our training set, the total number of combinations we

consider is 75 (e.g., 5 different values for the number of

streams, 5 different values for message size, and 3 different

values for replication factor). Based on the collected data, we

used linear regression to train the model that is used to predict

the maximum data rate in our system as follows.

log(predicted rate) = θ1#streams + θ2log(msg size) + θ3r + ε

(1)

The input to the model is the number of streams #streams,

their message size msg size, and the replication factor r.

The unit of predicted rate is messages/second, the unit of

msg size is byte. Due to the variability of predicted rate
and msg size, their data was log-transformed in order to

approximative a normal distribution. In this work, we used

the least-square approach to fit the performance model (1).

The model parameters are θ1 = -0.145, θ2 = -0.324, θ3 = -

0.141, and ε = 11.811. The p-values for the three independent

variables are all significant at 0.0001 level. The goodness-of-

fit metric (R-squared) for the overall model is 0.8583, and

significant at 0.0001 level. These results indicate that the

model was effective as 85% of the variability of the dependent

variable was explained by the independent variables. However,

we acknowledge that the high value of R-squared value should

be interpreted with caution as the number of data points in the

analysis is not large.

B. Overload Prediction Leveraging the Model

We use the constructed model to predict whether the system is

likely going to be overloaded for a given execution condition

during runtime for homogeneous and heterogeneous systems

as follows.

1) Overload Prediction for Homogeneous Systems: In case

of a homogeneous system, we simply use the information

regarding the number of streams, their message sizes, and

the replication factor of the back-end storage to predict the

maximum data rate that the system can handle using model

(1). We then compare the predicted rate (i.e., predicted rate)

against the actual data rate of the streams (i.e., real rate)

and conclude that the system is going to be overloaded if

predicted rate < real rate.

2) Overload Prediction for Heterogeneous Systems: In case

of a heterogeneous system, we determine potential overload

condition by leveraging model (1) as follows.

If there are n heterogeneous streams with the set of data rates

D (stream i has data rate di ∈ D, i = 1,...,n) and average

message size avg size, we first model them as n homogeneous

streams with message size avg size. Next, we use model (1) to

predict the maximum data rate (i.e., predicted rate) that the

system can handle for these n homogeneous streams. We then

find the maximum data rate of D (i.e., d messages/second),

calculate the average rate avg rate, the standard deviation δ
for the data rate of n heterogeneous streams, the difference

Δrate = |avg rate − δ|, and use them to determine whether

these n heterogeneous streams may cause overload or not.

Towards that, we define the overload prediction function f as

follows.

f =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

not overloaded, if d∗avg rate
predicted rate2 ≤ 1 (a)

overloaded, if d∗avg rate
predicted rate2 > 1 (b)

or Δrate > predicted rate (c)

undetermined, otherwise. (d)

In the above equation, cases (a), (b) and (c) can be explained

as follows.
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Case (a): avg rate ≤ predicted rate and di ≤
predicted rate ∀di ∈ D, i = 1,...,n
Case (b) and (c): avg rate > predicted rate and di >
predicted rate ∀di ∈ D, i = 1,...,n
If the value of f is undetermined (Case (d)) or Δrate ≤
predicted rate, we need to perform additional checks to

ensure that the system is not overloaded. This is due to the fact

that the average value of a group can be much smaller than

the value of one/more individual element(s) in the group due

to skewed distribution, causing Arion to mistakenly determine

that a group of streams does not cause overload while some

individual stream(s) in the group with large data rate(s) and/or

message size(s) can in fact cause overload.

To address this, first, we group all streams which have data

rate greater than avg rate into one group T and sort all the

streams in T in non-increasing order of data rate. Assuming

that this group has p elements, next we divide them into p
different subgroups where group sgi includes the first i streams

from T (1 ≤ |sgi| ≤ p, i = 1,..,p). Group sgi (i = 1,..,p)

is viewed as a group of i heterogeneous streams, and Arion

performs overload prediction for each subgroup separately by

following the steps described above (i.e., by considering the

above cases). If any subgroup sgi (i = 1,..,p) is found to cause

overload, then the middleware concludes that the original n
heterogeneous streams will cause overload as the load of n
streams will be higher than the load of the subgroup sgi.

C. Overload Detection in Real-time

As the prediction models are not perfect and may miss

potential overload condition, in addition to using the prediction

models, Arion uses a drop rate monitoring module as shown in

Figure 1 for detecting data loss in real-time. While early signs

of potential overload may be detected by monitoring utilization

of certain system resources (e.g., CPU utilization, memory

utilization), this is often error-prone and hard to tune the right

threshold. Hence, to avoid the possibility of misprediction,

in this work, we periodically check the information stored in

the database to determine whether data is being dropped or

not. In particular, we define a message as a (key, value) pair

where key is a unique message ID and value is the value of

the message. Message IDs in our experiments are consecutive

integers starting from 1. As such, if the current message ID

in the storage is x for a client with data rate λ, then if there

is no data loss, the message ID will be x + λ*t - 1 after one

second interval (t = 1 second). However, if the ID turns out

to be smaller than x + λ*t - 1, we know that the server has

dropped data, and the overload handler module is triggered.

D. Handling of Overload Condition

Arion uses a two-step approach towards handling the overload

condition as follows.

1) Stream Splitting: The first step is inspired based on the

observation that software is often the bottleneck which causes

the inefficient utilization of hardware resources. In such cases,

it is important to address the limitations of the software first

before allocating additional hardware resources to address the
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overload condition. For instance, in our study, we observed

that the resource utilization with more than one stream is

higher compared to a single stream when the system starts

losing data, indicating that, in case of a single stream, the

system is losing data even when the hardware resources are

underutilized. In Figure 2 we can see that the maximum rate

per stream for different number of streams that the storage

system can handle is not linear, and the total rate generated

by two separate streams that can be handled by the system is

greater than the maximum rate of a single stream. For example,

when replication factor is 3 and message size is 100 bytes, the

maximum total rate for two streams is 76,000 messages/second

compared to the maximum rate of 45,000 messages/second for

a single stream. This phenomenon indicates that, in case of a

single stream, the way a stream is handled by Cassandra is

causing the bottleneck rather than the hardware itself.

Based on this observation, we investigated the idea of splitting

a stream into multiple streams so that the system can achieve

better performance by exploiting the way multiple streams are

handled by Cassandra. The effectiveness of the stream splitting

mechanism for a single stream is demonstrated in Figure 3

where we changed the data rate of one stream from 50,000

to 100,000 (messages/second) and ran each experiment for 3

minutes and recorded the drop rate. We then split one stream

into two streams which push data into the same row at the new

rate. For example, if the original stream has rate of 60,000

messages per second, we split it into two streams with rate

of 30,000 messages per second each. The drop rate of the

split streams was then recorded and compared against the drop

rate of the original stream. Figure 3 shows that the splitting

mechanism helps to reduce the drop rate to 0% in most cases

and reduced by more than 6 times in other cases.

While the idea of splitting stream is simple, however, it is

not obvious which streams should be split and into how many

substreams it should be split. Furthermore, after splitting, each

substream can either push data into different rows of the same

table or can push data into the same row. The first approach

requires us to change the storage schema as it requires us to

have a new mechanism to manage the row keys. For example,

if a stream is stored in a row with key k, if we split it into

two streams, we can store them in rows with key k : 1 and

k : 2. However, with this scheme, an application (e.g., data

analytic application) that uses the data from that stream will
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Algorithm 1 StreamSplit(j)

1: isoverloaded ← true
2: Sort the streams based on non-increasing order of ratei

of stream i in S //S: list of streams for server j
3: while isoverloaded do
4: Pick and remove the first stream from S
5: Apply the model to split the picked stream

6: Update the value of isoverloaded
7: if not isoverloaded then
8: return false//the system is not overloaded

9: end if
10: end while
11: return true//the system is still overloaded

now need to read data from two different rows (i.e., k : 1 and

k : 2), merge them, and sort them based on their timestamps

to get back the original stream.

To avoid that effect on the data analytic applications, if

a stream has data rate of rate, we split that stream into

q substreams where each substream has a rate of rate/q.

Substream i will include messages with IDs id+ i, id+ i+ q,

id + i + 2q, ..., where id is the ID of the message, i = 0,..,q
- 1. For example, if we split a stream with starting ID 0 into

2 substreams, substream 0 will contain messages with IDs

< 0, 2, 4, 6, ... > and substream 1 will contain messages with

IDs < 1, 3, 5, 7, ... >.

The procedure to split streams is illustrated in Algorithm 1.

The run time of the algorithm was in the order of seconds in

our experiment (e.g., 10 seconds in the worst case). At step 5

in Algorithm 1, once we split a stream into q substreams, we

have n - 1 heterogeneous streams and q substreams. Currently,

the optimum value for q is determined empirically by running

experiments. In our case, the value of q is set to 2. Next, we

apply the same method described in Section II-B2 to predict

the performance of these n + q - 1 heterogeneous streams.

However, we treat these q substreams as q homogeneous

streams where each has the data rate as follows.

split rate = σ(rate/q) (2)

Here σ is the parameter representing the performance overhead

of the system when we push q substreams into the same row in

the data storage system. In our case, the value of σ is 0.8. The

value is calculated empirically by comparing q split streams

against q homogeneous streams. For example, if we split a

stream into 2 substreams, we can determine the maximum

rate for the two split streams. We then compare the maximum

rate for two substreams against the maximum rate of two

homogeneous streams. In Algorithm 1, Arion tries different

ways to split the streams to address the overload condition.

However, if the overload condition persists even after trying

all feasible combinations, Arion uses the stream redirection

approach as explained next.

2) Stream Redirection: Once Arion determines that the

splitting stream is not going to resolve the overload condition

completely, it redirects certain streams to additional servers

Algorithm 2 ResourceAllocation(n, m)
//n: number of streams that need to be redirected; m: number

of idle servers

1: Sort the streams based on non-increasing order of
rate∗msg size

60
2: M ← 1 //number of additional servers so far

3: for i=1 to n do
4: assigned ← false
5: for j=1 to M do
6: if server j can handle stream i then
7: add stream i to the list of streams for server j
8: assigned ← true
9: break

10: end if
11: end for
12: if not assigned then
13: for j=1 to M do
14: add stream i to the list of streams for server j
15: isoverloaded = StreamSplit(j)
16: if isoverloaded then
17: remove stream i from the list of streams for

server j
18: else
19: break

20: end if
21: end for
22: if isoverloaded & M < m then
23: wake up an idle server and add stream i to the list

of streams for that server

24: M ← M + 1

25: end if
26: end if
27: end for

to minimize data loss while minimizing the number of new

servers. This part of the solution is an extension of our own

prior work [2] where we integrated stream splitting with the

stream redirection to minimize the resource need.

Briefly, given a list of m idle servers which are powered on,

and a list of n streams with data rate rate1, rate2, ..., raten,

the goal is to find the number of servers M (M ≤ m) and

M-partition S1 ∪ ... ∪ SM of the set {1, .., n} such that the

set of streams Si can be handled by server i (1 ≤ i ≤ M ).

To minimize the number of additional servers in the above

problem, we apply the algorithm presented in Algorithm 2.

Briefly, Arion first checks whether server j can handle stream

i by applying the method described in Section II-B (line 6

of Algorithm 2). If the model predicts that the server will

be overloaded, the stream splitting mechanism is invoked

(line 15 of Algorithm 2). However, if the stream splitting

fails to mitigate the overload condition, additional servers are

allocated as needed (line 23 in Algorithm 2), which is done

based on the first fit decreasing approach for the bin packing

problem [10]. The main idea is to sort the streams that need
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Fig. 4: Predicted value and actual value for maximum data rate. The
data rate is in messages/second, the message size is in byte.

to be redirected in non-increasing order of data rate and then

assign them to the available servers recursively. Please see [2]

for details.

III. EVALUATION

In this work, we simulated multiple streams with different data

rates and message sizes, and tested the prediction accuracy

of our model along with performance improvement in terms

of resource allocation and data loss rate. We used Apache

Cassandra as the back-end storage platform to store the

data which is a distributed storage platform widely used in

the industry and by the research community [8], [11]. The

overload handler module in Figure 1 either forwards the data

which it receives from the data sources to the storage system,

splits data into multiple streams or redirects streams if needed.

In particular, the overload handler module is a Cassandra client

which is built based on Datastax Driver. To split a stream

into multiple substreams, it generates new processes with the

corresponding data rate to push data to Cassandra. Each data

source is handled by a corresponding Cassandra client.

A. Accuracy of the Model for Homogeneous Systems

To test the accuracy of model (1), we compared the predicted

maximum data rate for a given execution condition against the

maximum data rate that can be handled by the system which

was determined through experiments. As we want to avoid the

cases of false negatives (e.g., erroneously missing a potential

overload condition), if the predicted value is found to be less

than or equal to the actual system capacity then we consider

the output of the model to be correct. Otherwise, we consider

the output of the model to be incorrect as the predicted value

will cause the system to continue beyond the system capacity

and lose data.

The number of streams in the test case is set to 3, 5, 6, 7,

9, 11, 12, 13, 14, 15. Figure 4 shows the values predicted by

# streams 4, 6, 8, 10

Message size (byte) 100, 500

Replication factor 1, 2, 3

TABLE II: Number of streams, message sizes, and replication factor
of the system used in the test phase for heterogeneous systems.

Predicted Overload Predicted Not Overload

Overload 80 20

Not Overload 15.7 84.3

TABLE III: Rate of false positives and false negatives for heteroge-
neous systems.

model (1) and the actual values for the maximum data rate

for different values of replication factor and message sizes.

In Figure 4, the results of the model for different replication

factors are represented from left to right. Columns 1, 2, and 3

represent the result when the system has replication factor of

1, 2, and 3 respectively. The results for different message sizes

are shown from top to bottom. Rows 1, 2, 3, and 4 show the

results when the streams have message size of 100 bytes, 300

bytes, 500 bytes, and 1,000 bytes respectively. The accuracy

of the model is 84.9% where accuracy = (true positive + true
negative)/(true positive + true negative + false positive + false
negative).

B. Accuracy of the Model for Heterogeneous Systems

We use the same model to predict the potential overload

condition for heterogeneous systems. In particular, we test

the system by varying the number of streams, message size,

and replication factor as shown in Table II, which gives us a

total of 24 combinations. For each combination, we generate

three different sets of data rate for the n streams to cover

different cases as explained in Section II-B2. The data rates

were selected to ensure that the overload happens in several

of these cases. Out of these 72 test cases, there were 40 cases

where the system was overloaded, which allowed us to test

the rate of false positive and false negative for the overload

prediction mechanism. In our work, false positive refers to

the scenario where Arion determines a condition as potential

overload when it is actually not overloaded. On the other hand,

false negative refers to the scenario where Arion determines a

condition to be not overloaded when it is in fact overloaded.

In each case, we used the maximum data rate predicted by the

model to determine whether the system is overloaded or not.

Table III shows the rate of false positive and false negative

when the system is heterogeneous. The true positive rate of

the model in case of heterogeneous system is 80%, which is

slightly smaller compared to the true positive rate of the model

when we apply it to homogeneous systems (84.9%) due to

the variance of data rates. The rate of false positive and false

negative of the model are 15.7% and 20%, respectively. The

accuracy of the overload prediction mechanism is 81.9%.

To test against more realistic load condition, we also tested the

model by generating data streams based on normal and heavy-

tail distributions (Pareto distribution). For each distribution, we

considered 3 cases where we generated 24 points for each case

(Table II) such that the generated points in each case follow

that particular distribution. Table V shows the information
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Case # Streams Data Rate (messages/second) Stream Redirection

1 8 Original Rate 6000 1000 8000 10000 2000 10000 5000 30000
↓ ↓ ↙ ↘ ↙ ↘ ↓ ↙ ↘ ↓ ↙ ↘ No

New Rate 6000 1000 4000-4000 5000-5000 2000 5000-5000 5000 15000-15000
2 10 Original Rate 4000 4000 4000 4000 4000 10000 10000 10000 10000 10000

↓ ↓ ↓ ↓ ↓ ↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘ No
New Rate 4000 4000 4000 4000 4000 5000-5000 5000-5000 5000-5000 5000-5000 5000-5000

3 8 Original Rate 16000 1000 18000 1000 20000 10000 5000 5000
↙ ↘ ↓ ↙ ↘ ↓ ↙ ↘ ↙ ↘ ↓ ↓ Yes

New Rate 8000-8000 1000 9000-9000 1000 10000-10000 5000-5000 5000 5000

4 10 Original Rate 8000 9000 10000 9000 9000 9000 10000 8000 8000 8000
↓ ↓ ↙ ↘ ↓ ↓ ↓ ↙ ↘ ↓ ↓ ↓ Yes

New Rate 8000 9000 5000-5000 9000 9000 9000 5000-5000 8000 8000 8000

TABLE IV: Data rate without (“Original Rate”) and with stream splitting mechanism (“New Rate”). A number in bold font in row “Original
Rate” (“New Rate”) indicates the data rate of a stream before (after) splitting the stream.

Distribution Normal Heavy tailed

Case 1 μ = 9,000, σ = 20 α = 1

Case 2 μ = 9,000, σ = 50 α = 2

Case 3 μ = 8,000, σ = 80 α = 3

TABLE V: Distribution parameters.

Distribution Case False positive False Negative

Normal 1 16.8 19.8

Normal 2 15.9 19

Normal 3 17.6 21

Heavy tailed 1 19.9 22

Heavy tailed 2 18.8 21.2

Heavy tailed 3 17.9 20.8

TABLE VI: Rate of false positives and false negatives.

regarding distributions and Table VI shows the rate of false

positive and false negative for our model.

C. Effectiveness of the Overload Handling Mechanism

If the prediction model misses potential overload condition,

the drop rate monitoring module detects such cases in real-

time with 100% accuracy and triggers the overload handler

module. However, in such cases, the system suffers initial data

loss, which the prediction module tries to prevent and does

successfully in more than 80% cases.

Table IV shows 4 cases (selected from 72 cases described

in the previous subsection) where Arion applied the stream

splitting mechanism to avoid or reduce the number of dropped

messages. In Table VII, columns 2 - 4 show the drop rate of the

system without and with data loss minimization mechanism for

different number of streams. In the second case, the stream

splitting mechanism helps to reduce the drop rate to less than

1% (37.49% to 0.5%) without using any additional servers.

However, in the last two cases, although the stream splitting

mechanism can reduce the drop rate significantly, it is still

high, implying that the software solution is not adequate

alone in these scenarios. In such cases, the stream redirection

mechanism is used to redirect streams selectively to additional

servers. The fourth column shows the drop rate when Arion

uses the stream splitting and the stream redirection mechanism

together, which is about 3% or less.

Next, we present the number of additional servers that is

needed when Arion uses only the stream redirection mech-

anism compared to when it uses the two mechanisms together

Test No Data Loss Stream Stream Splitting Stream Stream Splitting

Case Minimization Scheme Splitting & Redirection Redirection & Redirection

1 26.27 1.03 - 2 0

2 37.49 0.5 - 2 0

3 74.261 5.09 2.77 2 2

4 39.19 33.74 2.39 4 2

TABLE VII: Drop rate (columns 2 - 4) and the number of additional
servers (columns 5 - 6) with different data loss minimization schemes
for the test cases shown in Table IV. The unit of drop rate is %.

(columns 5 - 6 in Table VII). In the first two cases, Arion

does not need to allocate any additional server when it uses

both schemes together and needs two additional servers in the

last two cases. None the less, in one of the last two cases,

the combined approach requires fewer number of servers

compared to the stream redirection mechanism alone, and

needs the same number of servers in another case, indicating

the effectiveness of the combined approach.

IV. DISCUSSION

The main idea of our work is to address situations where

the software causes the bottleneck instead of the hardware.

In particular, when the performance does not improve as the

workload continues to increase while the system resources re-

main underutilized, we assume that the software is causing the

bottleneck. In such cases, we propose splitting the workload

into multiple smaller workloads to increase the parallelism in

the system to leverage the unused processing capacity of the

hardware in a novel way. We strongly believe that the idea of

splitting streams (or similar ideas in other contexts) will work

as well.

Finally, we do realize that a typical data center often hosts

hundreds to thousands of servers. However, in a distributed

key-value storage system with replication factor of r, a node

only manages data assigned to it and data of its replica nodes

(r - 1 nodes). Hence, even if there are 10,000 nodes in a

cluster, a particular node is only affected when the streams

it is responsible for are changed in some way (e.g., increase

in sampling rate). Based on this observation, a large scale

stream processing system can be viewed as a group of multiple

small-scale clusters where each of these small clusters is

responsible for managing only a limited number of streams. As

the performance of the storage system for a particular stream

only depends on the small number of nodes responsible for
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handling that particular stream instead of all the nodes in the

cluster, we used 6 nodes to simulate such a small cluster and

evaluated the system by varying the replication factor from

1 to 3 [12], number of streams, sampling rates, and message

size.

V. RELATED WORK

Numerous prior efforts looked into the problem of resource

allocation and overload management for distributed and stream

processing systems. For instance, one of the prior efforts

investigated minimum spanning tree based algorithms to dis-

cover and allocate resources to meet real-time constraints [14].

Although this work assumes that data arrives continuously

and the volume of data is large, it is not designed to handle

the sudden changes in workload conditions without incurring

initial loss of critical data which is addressed in this paper.

Researchers also looked at distributed algorithms for reallo-

cating system resources (i.e., CPU) based on its utilization

to maximize the quality of the results in stream processing

systems [13].

In addition to investigating the challenge of resource alloca-

tion, research community has also looked into the problem

of building efficient data management systems for supporting

real-time sensor data streams [6]. For example, active ware-

housing techniques for systems that perform frequent joins

between streams and persistent disk relations has been studied

in the past [15]. Another work looked at the technique of

submodular maximization to summarize a large stream of data

“on-the-fly” to achieve high utility value with less computa-

tion cost [7]. In addition to these approaches, load shedding

technique, which drops excess load to avoid overload condi-

tion, has been effectively applied to data stream processing

systems in prior efforts [5]. Other notable efforts investigated

techniques such as the use of dedicated storage management

system for stream processing [16] and summarization of data

streams [17].

In contrast to prior efforts, the presented work integrates the

task of resource allocation with model-driven stream splitting

mechanism, and develops models that can be applied to

selectively split and redirect streams to minimize data loss

while minimizing the resource need as well, which has not

been attempted before.

VI. CONCLUSION

In this paper, we present Arion, a model-driven middleware

service that leverages a priori models developed based on

limited execution traces from homogeneous systems to predict

potential overload conditions in heterogeneous systems, and

attempts to address the overload condition by selectively

splitting streams and allocating additional servers as needed.

Extensive evaluation on a 6 node cluster demonstrates the

superiority of the approach compared to prior efforts. As the

solution can be implemented as a middleware service, the

presented framework can be easily extended for different data

streaming platforms, enabling context-aware management of

data acquisition in safety-critical IoT applications.
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