
Understanding the Influence of Configuration
Settings: An Execution Model-driven Framework

for Apache Spark Platform

Nhan Nguyen, Mohammad Maifi Hasan Khan, Yusuf Albayram, Kewen Wang

Department of Computer Science and Engineering, University of Connecticut

Email: {nhan.q.nguyen, maifi.khan, yusuf.albayram, kewen.wang}@uconn.edu

Abstract—Apache Spark provides numerous configuration set-
tings that can be tuned to improve the performance of specific
applications running on the platform. However, due to its multi-
stage execution model and high interactive complexity across
nodes, it is nontrivial to understand how/why a specific setting
influences the execution flow and performance. To address this
challenge, we develop an execution model-driven framework that
extracts key performance metrics relevant to different levels of
execution (e.g., application level, stage level, task level, system
level) and applies statistical analysis techniques to identify the key
execution features that change significantly in response to changes
in configuration settings. This allows users to answer questions
such as “How does configuration setting X affect the execution
behavior of Spark?” or “Why does changing configuration setting
X degrade the performance of Spark application Y?”. We tested
our framework using 6 open source applications (e.g., Word
Count, Tera Sort, KMeans, Matrix Factorization, PageRank,
and Triangle Count) and demonstrated the effectiveness of our
framework in identifying the underlying reasons behind changes
in performance.

Keywords-Apache Spark; Performance; Configuration Setting;
Workload Characterization

I. INTRODUCTION

Apache Spark [1] is a recently popularized large-scale data

analytic platform that is currently being used by a large

number of companies such as Amazon, eBay, and IBM1. Given

its superior performance compared to Hadoop (i.e., an imple-

mentation of MapReduce model) for certain applications (e.g.,

clustering algorithms), researchers have been recently focusing

on understanding its performance models. Among many, prior

work investigated the problem of predicting performance [2],

[3], understanding the effect of bottleneck components [4],

and modeling interference [5]. However, understanding the

influence of configuration settings on the performance of Spark

is still an open research problem and is nontrivial for several

reasons. For instance, as Spark provides a large number of

configuration settings (which is common for large-scale cloud

platforms [6]), it is extremely challenging to understand how

each setting may influence the performance of a particular

Spark application, leading to possible misconfiguration and/or

suboptimal performance problem. Moreover, as Spark supports

a wide variety of applications such as machine learning, graph

computation, interactive queries, and stream applications, and

1http://spark.apache.org/faq.html

each setting may influence different applications differently,

it is important to develop a framework that allows users to

investigate the performance influence model of each setting

for different applications with minimal effort.

To address this void, we present an execution model-driven

framework that allows automated identification of performance

influence models of each setting for a specific application.

The main idea is to leverage the multi-stage execution flow of

Spark to identify relevant performance metrics for each stage

and apply statistical analysis iteratively to determine the key

execution features that get affected due to changes in settings.

Our framework allows users to answer questions such as “How

does configuration setting X affect the execution behavior

of Spark?” or “Why does changing configuration setting X

degrade the performance of Spark application Y?”.

To evaluate our framework, as the same setting may affect

the performance of different applications differently, we used

six different workloads. Specifically, we used Word Count and

Tera Sort (batch processing applications), KMeans and Matrix

Factorization (machine learning algorithms), and PageRank

and Triangle Count (graph computation algorithms). In each

case, our framework correctly points to the underlying factors

influencing the performance for individual settings.

II. THE DESIGN OF THE EXECUTION MODEL-DRIVEN

FRAMEWORK

A. Execution Model of Spark

At a high level, Spark contains two main components: the

driver program and the executors. The driver program (i.e.,

main program) receives an application (a.k.a. job) from a

client and coordinates with a set of executors on worker

nodes to run the submitted job. The executors can return the

result to the driver program or directly write to a predefined

output location. In this platform, a Spark job can be viewed

as a directed acyclic graph of stages where each stage con-

tains a group of tasks. Each task works directly with the

resilient distributed dataset (RDD) partitions, and computes

and outputs the intermediate result that can be used by the

tasks in the following stage. There are two types of tasks

in Spark: ShuffleMap Task and Result Task. A ShuffleMap

Task executes a task and divides the task output into multiple

partitions. A Result Task sends the result back to the driver

2017 IEEE 10th International Conference on Cloud Computing

2159-6190/17 $31.00 © 2017 IEEE

DOI 10.1109/CLOUD.2017.119

802

program or outputs the result by itself. Stages in Spark are

usually separated by shuffle operations where a task in a stage

requires data from the previous stage. A shuffle operation is

expensive as it can involve data partition, data serialization/de-

serialization, and data transfer over the network.

Based on the execution flow, we can represent the runtime of
a Spark application as follows.

Runtime Application = Application Initialization

+
S∑

i=1

Runtime Stagei +Application Termination (1)

Here S represents the number of stages of an application.

As each stage contains (possibly multiple) waves of paral-
lel tasks, if the average run time of a task in a stage is
Task Runtime Average, then we have the following.

Runtime Stagei

= Finish T ime Last Task − Submission T ime First Task

≈
W∑

j=1

Longest Task Runtime in Wavej

≈W ∗ Task Runtime Average (2)

Here W represents the number of waves of tasks in a stage.

Assuming that we know the number of tasks (i.e.,
Number of Tasks) and the maximum number of parallel
tasks (i.e., Number of Parallel Tasks), then the stage
runtime in (2) can be estimated as follows.

Runtime Stagei =

Number of Task

Number of Parallel Tasks
∗ Task Runtime Average (3)

In Spark, each RDD is assigned to a task and the number of
tasks is calculated as shown in (4) where Input Size is the size
of the input data and Block Size is the size of the distributed
file system block which Spark uses (i.e., HDFS in this work).

Number of Tasks =
Input Size

Block Size
(4)

The value of Block Size of HDFS is configurable but in this

work we only focus on configuration settings of Spark and

used the default value for Block Size (i.e., 128MB). Based

on the above model, we can see that a setting can affect the

performance of an application at one or more levels (e.g., task,

stage), making it harder to understand the underlying reasons

behind changes in performance, which we try to automatically

identify in this paper using simple statistical techniques.

B. Methodology for Identifying the Role of Configuration
Settings in Spark

1) Selecting Configuration Settings Related to Perfor-
mance: To demonstrate our approach, based on Apache Spark

documentation2, we first identify a subset of the configuration

settings that are related to performance tuning and classify

them into different types based on whether it is a basic

application setting (i.e., Type Application) or a setting for

tuning an individual phase of the Spark application (e.g.,

2http://spark.apache.org/docs/latest/configuration.html

Configuration Setting Default Type Resource
Value

spark.driver.cores 1 Application CPU
spark.driver.memory 1g Application Memory

spark.executor.memory 1g Application Memory
spark.executor.cores - Execution CPU

spark.task.cpus 1 Scheduling CPU
spark.default.parallelism - Execution CPU
spark.memory.fraction 0.6 Memory Memory

Management
spark.reducer.maxSizeInFlight 48m Shuffle Memory

spark.shuffle.compress true Shuffle Memory
spark.shuffle.spill.compress true Shuffle Memory

spark.speculation false Scheduling -

TABLE I: Configuration settings related to the performance of
Spark. In Column Default Value, symbol “-” denotes that the
default value is set by Spark. In column Resource, symbol “-”

indicates multiple resources.

Level Metrics

Application execution time, number of running executors, number of stages,
execution time of each stage, number of tasks, total runtime of
each type of tasks, shuffle read/write bytes over the network
and on local disk, de-serialization/serialization time

Stage execution time, number of tasks, total runtime of each type of tasks
Task task type and task execution time
System CPU utilization, RAM usage, Disk throughput, Network throughput

TABLE II: Execution metrics are organized in the following order
(high to low): application, stage, task, and system.

Shuffle, Execution) (column Type in Table I). The first three

configuration settings listed in Table I are used to tune the

performance of the driver and executor processes. The remain-

ing configuration settings are used to tune the performance

of Spark jobs at task-level. Configuration settings can be

further grouped based on which resource it is likely to affect

significantly (i.e., column Resource).

2) Benchmarking and Collecting Data: Although we can

classify configuration settings in Spark into different groups

as described above, however, given the multi-stage execution

model and different kinds of processes that are involved

(e.g., executor, worker), it is nontrivial to understand “How”

a particular setting affects performance. To understand how

changing a setting actually affects application performance, in

addition to collecting information related to system resource

usage, we extract execution metrics from Spark logs and

organize them at three levels based on execution model,

namely, application level, stage level, and task level as shown

in Table II.

To investigate the effect of configuration change, we run

benchmarks with different workloads and change one setting

at a time (excluding the first three settings listed in Table I).

During execution, we collect the relevant execution metrics

(Table II). For numerical settings, we carefully select different

values to stress the system. For a Boolean or categorical type,

we try all possible values. We run each benchmark 5 times for

a specific value and take the average of the observed metrics.

For each value of a setting, we create a set of vectors where

each vector contains all the metrics shown in Table II. In

our case there are two types of metrics: scalar and vector.

For example, application execution time, number of tasks,

and number of stages are scalar items. Execution time of

803

stages and task duration are represented as vectors of numbers.

Furthermore, we calculate statistical metrics such as max, min,

mean for resource usage vectors such as CPU utilization, and

disk I/O.

3) Analyzing Collected Data: If the change in performance

is found to be not significant for different values of a particular

setting, we do not perform any further analysis for that setting.

In our case, we tested 20 settings and narrowed down to 11

settings as shown in Table I that appear to affect performance

significantly when changed in isolation. Next, we study the

reason why that setting affects the performance of Spark.

For scalar metrics, we use Pearson correlation coefficient (r)

to measure the correlation between the stage and task level

metrics (e.g., number of task) and the performance (e.g.,

runtime) to determine Spark execution metrics that are related

to performance changes. For vector metrics, we compare the

probability distributions to determine whether these metrics

change significantly when we change a setting. If the vector

metrics such as task duration across multiple experiments ap-

peared not to be normally distributed (Kolmogorov-Smirnov),

we use the non-parametric Mann-Whitney U-tests to compare

task duration obtained for two different values of a configura-

tion setting.

III. EVALUATION

For evaluation, all experiments were performed using Spark

version 2.0.2 and HDFS version 2.7.1 on a cluster of 6 nodes.

Each node has 12 CPU cores, 32 GB of RAM memory,

and 1.8 TB hard drive. The network bandwidth is 1Gbps.

In aggregate, the cluster has 60 cores, 192 GB of RAM

memory, and 10.8 TB hard drive. One node is configured as

the master node and the others as slave node for both HDFS

and Spark. We use HDFS with a block size of 128 MB and

a replication factor of 3. As Spark is extremely slow when

the first three settings listed in Table I (i.e., spark.driver.cores,

spark.driver.memory, spark.executor.memory) use default val-

ues, we set spark.driver.cores = 8, spark.driver.memory = 28

GB, and spark.executor.memory = 28 GB (which left 4 GB for

the Operating system). These values were not changed across

experiments.

A. Job Characteristics
In our study, we used Word Count (WC) and Tera Sort

(TS) which are well-known batch processing applications

for MapReduce-like frameworks, KMeans (KM) and Matrix

Factorization (MF) which implement machine learning algo-

rithms, and PageRank (PR) and Triangle Count (TC) which

implement graph computation algorithms. Word Count counts

the total number of occurrences of each word in a document.

Tera Sort leverages map/reduce framework to sort data based

on a total order. KMeans implements a clustering algorithm

that classifies a given set of data points into a predefined

number of groups. Matrix Factorization, a collaborative filter-

ing technique, uses alternating least square modules provided

by the Spark MLib package. PageRank implements a graph

processing algorithm that measures the importance of each

0
20
40
60
80

100

WC TS KM MF PR TC

P
er

ce
nt

ag
e

(%
)

Application
Percentage of Number of Result Tasks
Percentage of Number of ShuffleMap Tasks

(a) Number of tasks.

0
20
40
60
80

100

WC TS KM MF PR TC

P
er

ce
nt

ag
e

(%
)

Application
Percentage of Result Task Time
Percentage of ShuffleMap Task Time

(b) Aggregated task execution
time.

Fig. 1: Task characteristics for different applications.

Workload Dataset Size SR SW Stages Tasks

Word Count Wikipedia 34 GB 6.4 GB 7.9 GB 2 534
Tera Sort Synthetic 20 GB 17 GB 20 GB 4 800
KMeans Synthetic 46 GB 25 MB 32 MB 19 6726
Matrix Amazon Movie 4 GB 216 MB 1.9 GB 56 117

Factorization Review
PageRank Live Journal 20 GB 3 GB 5 GB 13 2050

Triangle Count Amazon Movie 200 MB 413 MB 993 MB 11 22
Review

TABLE III: Benchmarking dataset for different applications and
their execution characteristics under the default setting. SR and SW
represent the amount of shuffle read and shuffle write respectively.

node in a graph. Triangle Count application counts the number

of triangles in a graph. Each of these applications uses different

Spark core operators and functions provided by the machine

learning and graph library to implement the algorithms.

The data sets used by these applications are listed in Table III.

Dataset Wikipedia is downloaded from Wikimedia website3.

Synthetic datasets (Tera Sort and KMeans) are created using

the data generator classes provided by the Spark. Amazon

Movie Review and Live Journal data sets are downloaded from

Stanford Network Analysis Project website4.

As shown in Figure 1 (a) and Figure 1 (b), the ratio of the

number and execution time of ShuffleMap Tasks and Result

Tasks for different applications are quite different. Also, differ-

ent applications spend different amounts of time in performing

the ShuffleMap Tasks and Result Tasks respectively.

The cumulative distributions of task durations for these appli-

cations are presented in Figure 2. As can be seen, Word Count

has the largest task duration with the value of 100 seconds

and Matrix Factorization has the smallest task duration with

the value of 2 seconds. As task is the fundamental unit

of execution in Spark, the duration of the longest task has

a significant impact on the runtime of a Spark application

(Equation (2)). From Figure 2, we can see that the duration of

ShuffleMap Tasks and Result Tasks varies significantly across

different applications.

In terms of network load (column shuffle read (SR) in Ta-

ble III), once again different applications exhibit different

characteristics. For example, while KMeans does not transfer

too much data over the network (25 MB) although the input

data size is 46 GB, the size of the data transferred by Tera Sort

over the network is quite large (17 GB) though its input data

size is smaller (20 GB) compared to KMeans. Other relevant

3https://dumps.wikimedia.org/enwiki/
4https://snap.stanford.edu/

804

0 20 40 60 80 100

Task Duration (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

WC ShuffleMap

WC Result

KM ShuffleMap

KM Result

(a) Word Count and KMeans.

0 10 20 30 40 50 60

Task Duration (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

TS ShuffleMap

TS Result

TC ShuffleMap

TC Result

(b) Tera Sort and Triangle Count.

0 5 10 15 20 25 30 35 40

Task Duration (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

MF ShuffleMap

MF Result

PR ShuffleMap

PR Result

(c) Matrix Factorization and PageRank.

Fig. 2: Cumulative distributions of task durations for different applications.

Configuration Setting Base value Tuned values Affected Metrics WC TS KM MF PR TC

spark.executor.cores 1 4, 8, 12 task duration ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - - -
spark.task.cpus 1 2, 4, 6, 8 task duration ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ - ↓ ↓ ↓ - - - ↓ ↓ ↓ ↓ ↓ - - -

spark.default.parallelism 1 4, 8, 100 task duration ↑
spark.memory.fraction 0.6 0.3, 0.5, 0.7, 0.9 input data size, shuffle time - ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↑ - ↑ ↑ - - - - ↓ ↓ ↓ ↓ - ↑ - -

spark.reducer.maxSizeInFlight 48MB 24MB, 96MB, 144MB shuffle time - ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ - - - ↓ ↓ ↓ - ↑ ↑
spark.speculation false true number of tasks ↓ ↓ ↓ - - -

spark.shuffle.compress true false de-serialization time, shuffle time ↓ ↓ ↑ ↓ ↓ ↓
spark.shuffle.spill.compress true false de-serialization time, shuffle time ↑ ↓ ↑ - ↓ -

TABLE IV: Configuration settings and their effect on different applications. Symbol “↑”, “↓”, “-” indicates whether the performance of
Spark is improved, degraded, or remain almost unchanged respectively when a setting is changed to a new value (each arrow corresponds

to the respective value in column “Tuned values”) compared to the baseline performance using the base value (column “Base value”).

-5
5

15
25
35
45
55
65

WC TS KM MF PR TC

C
h

an
ge

 P
er

ce
n

ta
ge

 (
%

)

Application
spark.executor.cores=4 spark.executor.cores=8
spark.executor.cores=12

(a) Setting spark.executor.cores
(base value =1).

-260

-210

-160

-110

-60

-10
WC TS KM MF PR TC

C
h

an
ge

 P
er

ce
n

ta
ge

 (
%

)

Application

spark.task.cpus=2 spark.task.cpus=4
spark.task.cpus=6 spark.task.cpus=8

(b) Setting spark.task.cpus (base
value=1).

Fig. 3: Changes in Spark performance.

job characteristics information for different applications are

listed in Table III.

The values of different settings that are used in our exper-

iments along with the metrics that are significantly affected

when we change the settings are listed in Table IV. The details

are discussed below.

B. How does spark.executor.cores influence performance?
Setting spark.executor.cores defines the number of cores that

can be used by each executor process. The number of

executors per node is decided a priori based on this set-

ting, total available memory in the system, and the setting

spark.executor.memory. In our case, the number of executors

per node was fixed at 1. Hence, intuitively, if we increase the

value of spark.executor.cores, it should allow the executor to

run multiple tasks in parallel, and reduces the execution time.

To test this, we set spark.executor.cores equal to 4, 8, and 12

and compared the performance against spark.executor.cores =

1 (Figure 3 (a)). We can see that the performance changes

significantly when the value is changed from 1 to 4, and

remains similar beyond that point. When we vary the value

of this setting, the correlation analysis shows that the number

of tasks is significantly correlated to the runtime (Pearson’s

r = 0.373, p = 0.043), implying that the applications that

have a large number of tasks to run gained significantly more

improvement by increasing the value of spark.executor.cores.

C. How does spark.task.cpus influence performance?
Setting spark.task.cpus defines the number of CPU cores that

can be used to execute tasks, which in turn determines the

number of parallel tasks in the system (Equation (5)). In

Spark, the value of Number of Parallel Tasks affects the

number of waves of tasks (i.e., the larger number of waves

might lead to more time for a particular stage). Therefore, if

we increase the value of spark.task.cpus, the number of waves

of tasks is likely to increase, which can significantly reduce

the performance of Spark if an application has many tasks. Not

surprisingly, the number of tasks and the run time is found to

be positively correlated in our study (r = 0.443, p = 0.027).

We also found the number of shuffle tasks to be significantly

correlated to the performance of Spark when we change the

value of this setting (r = 0.437, p = 0.029).

Number of Parallel Tasks =
Number of Cores

spark.task.cpus
(5)

Figure 3 (b) illustrates how the performance is affected

due to changing this setting. Interestingly, for Word Count,

changing spark.task.cpus to 2 and 4 reduces the runtime of

tasks including the longest task, which helps to improve the

performance. In contrast, the performance of PageRank, which

has the largest number of shuffle tasks (1,920 tasks), is reduced

significantly when we increase the value of spark.task.cpus. As

such, based on our experiments, it appears that increasing the

value of spark.task.cpus may be beneficial if an application

has long task duration (e.g., Word Count in Figure 2 (a)).

D. How does spark.default.parallelism influence perfor-
mance?

805

0

2

4

6

8

10

12

WC TS KM MF PR TC

Sp
ee

du
p

(X
)

Application
parallelism = 4 parallelism = 8 parallelism = 100

(a) Setting spark.default.parallelism (base
value=1).

-50

-30

-10

10

WC TS KM MF PR TC

C
ha

ng
e

Pe
rc

en
ta

ge
 (%

)

Application
memory.fraction=0.3 memory.fraction=0.5
memory.fraction=0.7 memory.fraction=0.9

(b) Setting spark.memory.fraction (base
value=0.6).

-12

-7

-2

3

8

WC TS KM MF PR TC

Pe
rc

en
ta

ge
 C

ha
ng

e
(%

)

Application
maxSizeInFlight=24MB maxSizeInFlight=96MB
maxSizeInFlight=144MB

(c) Setting spark.reducer.maxSizeInFlight
(base value=48).

Fig. 4: Changes in Spark performance.

0 20 40 60 80 100

Task Duration (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

ShuffleMap Task Duration

Result Task Duration

(a) spark.default.parallelism = 8.

0 10 20 30 40 50 60 70

Task Duration (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

ShuffleMap Task Duration

Result Task Duration

(b) spark.default.parallelism =
100.

Fig. 5: Cumulative distribution of task durations for different values
of setting parallelism for PageRank.

Setting spark.default.parallelism defines the number of par-

titions returned by the shuffle operations, which defines the

number of tasks in the second and later stages. The number

of parallel tasks indicates how many tasks can be executed

in parallel by an executor. For this setting, analysis at the

third level (task level) helps to find out why the setting

affects the performance of Spark. Specifically, after applying

Mann-Whitney U test, we found that the task duration when

spark.default.parallelism = 8 is significantly different com-

pared to when spark.default.parallelism = 100 (U = 75961,

p < 0.001). Figure 5 shows the distributions of task durations

when we run PageRank with spark.default.parallelism = 8

(Figure 5 (a)) and spark.default.parallelism = 100 (Figure 5

(b)). We can see the difference between the ShuffleMap Task

duration in these two figures. Intuitively, the small value of

spark.default.parallelism leads to an increase in the duration

of ShuffleMap Tasks but does not affect the duration of Result

Tasks. The change in duration of ShuffleMap Tasks explains

the slowdown of Spark when spark.default.parallelism = 8.

Figure 4 (a) shows the effect of setting

spark.default.parallelism on different applications. Based

on our experiments, we conclude that this setting can help

if an application has long ShuffleMaptask duration such as

Word Count (Figure 2 (a)) and Page Rank (Figure 2 (c)).

E. How does spark.memory.fraction influence performance?

Setting spark.memory.fraction defines how much memory

Spark uses for execution and storage. For this setting, we found

that input data size (r = 0.639, p < 0.001) and shuffle time

(r = 0.587, p < 0.001) are significantly positively correlated

to performance. Figure 4 (b) shows the performance change

of Spark when we varied the value of this setting. While the

performance of Tera Sort and PageRank reduces significantly

(up to 48%) when the value of spark.memory.fraction is small,

the performance of the other applications is less affected by the

same value of the setting. The value of 0.7 helps to improve the

performance of KMeans up to 12% and also has less negative

effect on the performance of PageRank. The experiment shows

that the performance of applications which have small shuffle

time (e.g., Matrix Factorization) or small input data size (e.g.,

Triangle Count) does not vary much when we change this

setting.

F. How does spark.reducer.maxSizeInFlight influence perfor-
mance?
Setting spark.reducer.maxSizeInFlight determines the amount

of data that can be fetched from map outputs by each reducer.

We found shuffle time (r = 0.548, p = 0.001) to be an impor-

tant factor related to the application execution time. Figure 4

(c) shows that this setting reduces the performance of Tera Sort

and PageRank if we set this setting to a value different than the

default value (i.e., 48MB). We can see that the performance

of the applications which have large amount of data to be

read/written by shuffles (e.g., Tera Sort and PageRank as

shown in Table III) heavily depends on this setting (depends

on the shuffle time). If we set this setting to a small value,

it is likely to benefit a system which has a small amount of

memory but will require more number of transactions between

machines. As our cluster has a large amount of memory, the

small value for spark.reducer.maxSizeInFlight (24MB in this

work) does not improve Spark performance significantly.

G. How does spark.speculation influence performance?
Setting spark.speculation is used to enable the feature

that runs speculative execution of tasks. In particular, if

spark.speculation = true, Spark automatically checks if there

is any task that is running slowly and re-launch that task

automatically. In general, this setting is used to mitigate the

effect of straggler tasks on the performance of Spark. However,

Figure 6 shows that the performance of Spark degrades if we

set this setting to true, especially for KMeans. We compared

cumulative distributions and characteristics of KMeans when

Spark has different values for spark.speculation. Although U

test shows that the cumulative distributions are not signifi-

cantly different, the number of tasks which is significantly

correlated with the run time (r = 0.723, p = 0.005) increased

when spark.speculation = true. This increase in the number of

tasks causes Spark to run longer.

806

Applications
TCPRMFKMTSWC

R
un

tim
e

(s
)

750

600

450

300

150

spill.compress=false
speculation=true
shuffle.compress=false
Default

Fig. 6: Spark runtime for spark.speculation, spark.shuffle.compress,
and spark.shuffle.spill.compress.

H. How does spark.shuffle.compress influence performance?
Settings spark.shuffle.compress and spark.shuffle.spill.com-
press determine whether Spark needs to compress map output

and data spilled when performing shuffle operations respec-

tively. For these settings, executor de-serialization time (i.e.,

the amount of time Spark executors spend to de-serialize data)

(r = 0.733, p = 0.001) and shuffle time (r = 0.705, p =
0.001) are found to be significantly correlated with the run

time. We note that this setting should be set after considering

the trade-offs between CPU performance and network/disk

performance. In particular, while compressing data helps to

reduce the size of data sent over the network or stored on

disks, it will cost CPU resource to compress data. Therefore,

if the data to be read/written by shuffles is small like KMeans

(Table III), compressing data is likely to increase the total

runtime (Figure 6).

IV. RELATED WORK

While configuration tuning for Apache Spark platform is

not well studied yet, quite a few work exist that looked

into the problem of performance modeling for Apache Spark

platform [3]–[5], that includes the release of a benchmarking

suite for performance measurement [7]. Among these few,

Min Li et. al illustrated the effect of configuration settings on

performance of Spark [7]. Another recent study demonstrated

the influence of different factors such as system resources (i.e.,

Disk, Network) and task stragglers (i.e., slow tasks) on perfor-

mance of Spark [4]. Norbert Siegmund et al. [8] used machine

learning and sampling heuristics to construct performance

influence models for configurable systems that help to describe

how configuration settings and their interactions influence the

performance of a system. In particular, the authors proposed

sampling methods to select samples from a large configuration

space and used linear regression to construct performance

models. Performance modeling, resource allocation in various

other cloud settings are studied as well [6], [9], [10].

While several of these prior efforts are close in spirit to

our work, however, we focus on understanding the effect of

configuration settings on Spark applications at the execution

level. To the best of our knowledge, we are the first to

investigate an execution model-driven framework that attempts

to explain how and why different configuration settings affect

application performance.

V. CONCLUSION

In this paper we present an execution model-driven framework

for understanding the performance influence models of indi-

vidual Apache Spark setting. By using a representative set of

open source applications, we demonstrate that it is possible

to reason about the impact of settings by characterizing the

workloads and applying statistical analysis techniques. While

this paper does not facilitate automated tuning of settings or in-

vestigate the interactions among multiple settings, we strongly

believe that the presented framework can be leveraged to

gain insights regarding the underlying reasons behind observed

performance variations in response to changes in settings.

VI. ACKNOWLEDGMENT

This material is based upon work supported by the Air Force

Office of Scientific Research award number FA 9550-15-1-

0184 under the DDDAS program. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the funding agency.

REFERENCES

[1] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing,” in
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 2–2.

[2] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient Performance Prediction for Large-scale Advanced
Analytics,” in Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, ser. NSDI’16. Berkeley, CA,
USA: USENIX Association, 2016, pp. 363–378.

[3] K. Wang and M. M. H. Khan, “Performance Prediction for Apache
Spark Platform,” in 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th Interna-
tional Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems.

[4] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making Sense of Performance in Data Analytics Frameworks,” in
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’15. Berkeley, CA, USA:
USENIX Association, 2015, pp. 293–307.

[5] K. Wang, M. M. H. Khan, N. Nguyen, and S. Gokhale, “Modeling Inter-
ference for Apache Spark Jobs,” in Proceedings of IEEE International
Conference on Cloud Computing (CLOUD), ser. CLOUD’16, 2016.

[6] N. Nguyen, M. M. H. Khan, and K. Wang, “CSMiner: An Automated
Tool for Analyzing Changes in Configuration Settings across Multiple
Versions of Large Scale Cloud Software,” in 2016 IEEE 9th Interna-
tional Conference on Cloud Computing (CLOUD), June 2016, pp. 472–
480.

[7] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “SparkBench:
A Comprehensive Benchmarking Suite for in Memory Data Analytic
Platform Spark,” in Proceedings of the 12th ACM International
Conference on Computing Frontiers, ser. CF ’15. New York, NY,
USA: ACM, 2015, pp. 53:1–53:8.

[8] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
influence Models for Highly Configurable Systems,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015.

[9] D. Kimura, E. Numata, and M. Kawatsu, “Performance Modeling to
Divide Performance Interference of Virtualization and Virtual Machine
Combination,” in Cloud Computing (CLOUD), 2014 IEEE 7th Interna-
tional Conference on. IEEE, 2014, pp. 256–263.

[10] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A Self-tuning System for Big Data Analytics.” in
CIDR, vol. 11, 2011, pp. 261–272.

807

