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Abstract—Apache Spark provides a large number of config-
uration settings that may be tuned to improve the performance
of specific applications running on the platform. However,
it is non-trivial to identify the combination of settings that
may improve the performance of a specific application as the
influence of each setting on performance may vary across
applications. As identifying the optimal combination of settings
is computationally infeasible due to exponential search space,
in this paper we investigate machine learning based approaches
to construct application specific performance influence models,
and use them to tune the performance of specific applica-
tions running on Apache Spark platform. We evaluated our
approach using 9 different applications on a 6 node cluster
and demonstrated that our framework can reduce execution
time by 22.8% to 40.0% depending on applications.
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I. INTRODUCTION

Apache Spark [20] is a recently popularized data analytic

platform that is adopted by a large number of companies1.

As the characteristics of different Spark applications often

vary significantly in terms of resource requirement and exe-

cution flow, Spark provides a large number of configuration

settings that may be tuned to optimize the performance of

a specific application. While several recent efforts looked at

the problem of configuration tuning in the context of Apache

Spark [7], however, given the large number of settings

(which is common for large-scale cloud platforms [8]), it

is non-trivial to tune them automatically. Furthermore, as

multiple settings are often related to performance and can

interfere, tuning efforts need to consider combination of

settings together to avoid suboptimal configuration and/or

possible misconfiguration error.

To automate the process of configuration tuning, we investi-

gate machine learning based approaches that can automati-

cally search and identify the set of recommended settings

that may improve performance significantly compared to

the default settings. Specifically, for a given number of

settings that may affect performance (which are identified

a priori), we first use Latin hypercube design strategy to

identify a set of configurations that are used to benchmark

the system and collect training data. Next, we train multiple

machine learning models and identify the most effective

1http://spark.apache.org/faq.html

one based on prediction accuracy. In our work, we consider

three different machine learning methods to construct perfor-

mance models for each application, namely, Artificial Neural

Network (ANN), Support Vector Regression (SVR), and

Decision Trees (DT). Finally, we apply Recursive Random

Search algorithm to tune the configuration settings for each

application leveraging the most effective machine learning

model identified in the previous step.

To evaluate our framework, as the same setting may affect

the performance of different applications differently, we used

nine different applications covering three different applica-

tion types. Specifically, we used Word Count and Tera Sort

as representative of batch processing applications, KMeans,

Support Vector Machines, Matrix Factorization, and Deci-

sion Trees as representative of machine learning algorithms,

and PageRank, Triangle Count, and Connected Components

as representative of graph processing algorithms. In each

case, we evaluate the accuracy of the constructed models

and the improvement in performance as a result of con-

figuration tuning. The evaluation shows that our framework

can improve performance significantly and the improvement

ranges between 22.8% to 40.0% depending on applications.

II. RELATED WORK

A number of recent efforts documented the effect of con-

figuration settings on performance of Apache Spark appli-

cations [4] [7]. The influence of different factors such as

system resources (i.e., Disk, Network) and task stragglers

(i.e., slow tasks) on performance of Spark applications are

demonstrated as well [10].

Given the significance of the problem, not surprisingly, a

large number of prior efforts looked at various aspects of

performance modeling and configuration tuning for Apache

Spark and other map-reduce computing platforms [10], [14],

[16], [18]. Among these, Min Li et al. applied feedback

control loop based approach to construct MRONLINE, a tool

to tune performance of MapReduce framework [5]. Specif-

ically, MRONLINE collects runtime data (e.g., execution

profile) for a given job and uses hill climbing algorithm to

find the desirable configurations that may improve perfor-

mance. Neighborhood selection algorithm [9] is also being

used to discover configuration settings that are superior than

the default settings. The problem of configuration tuning is

studied in other domains as well, For instance, iTuned [2]
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focuses on online parameter tuning for database systems.

Specifically, it uses Bayesian optimization with Gaussian

processes to identify a set of high-impact parameters and

values that may improve performance. Markov decision

process theory and reinforcement learning based approaches

are used to determine the relationship between configuration

settings and the system workload [1] in the past. One of

the recent works [15] applied artificial neural network for

configuration tuning.

Among white-box approaches, cost-based optimizer is

widely used for finding optimal configuration settings [3],

[21]. For example, Starfish profiles Hadoop by running

different jobs and feeds the collected profiles to a What-if

Engine to perform cost-based estimation. Zheng et al. [21]

applied dependency graphs to describe the performance de-

pendencies among different parameters of Web applications.

While white-box analysis is useful in understanding how a

system works, constructing such models often requires an

in-depth understanding of the underlying software system,

which is time consuming for a large scale system. Further-

more, such model may become obsolete as the software

evolves over time.

Among the relevant prior efforts, Norbert Siegmund et
al.’s work [12] is closest in spirit to our approach that

used machine learning techniques and sampling heuristics

to construct performance influence models for configurable

systems. In particular, the authors used sampling strategy to

select samples from a large configuration space and used

linear regression to construct performance models. The con-

structed performance models provide explanation regarding

how configuration settings influence the performance. Unlike

this effort, we apply Latin Hypercube sampling technique to

minimize the number of training samples, and use recursive

random search algorithm to tune performance leveraging

trained machine learning models.

III. APPROACH

Apache Spark provides more than 150 configuration set-

tings which can be clustered into multiple groups (e.g.,

Application Properties, Shuffle Behavior) based on which

aspect of the execution they affect2. For example, configu-

ration settings in the Application Properties group affect the

performance of the whole application while configuration

settings in the Shuffle Behavior group only affect the shuffle

phase of Spark. Furthermore, there are settings that are used

to configure runtime environment (e.g., classpath, network

ports, spark UI) rather than tuning performance.

While there are more than 150 settings, we note that only a

handful of these settings are intended to tune performance.

Therefore, in this paper we only focus on settings that

are related to the performance of Spark and attempt to

tune them to improve performance. Specifically, given n

2https://spark.apache.org/docs/2.0.2/configuration.html
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Figure 1. Workflow for model selection and configuration tuning.

configuration settings that are related to the performance of

the system, our tool searches for the set S = (v1, v2, ..., vn)

that will achieve the highest performance gain compared to

the default settings (i.e., vi stands for the value of setting

si). Therefore, if we denote the performance of the system

as p where p is a function of S (i.e., p = f(S)), then the

configuration tuning problem can be defined as a search

problem that attempts to find the global minimum S∗, such

that:

S∗ = argmin f(S) (1)

In our paper configuration set S can include settings of

different types such as integer, binary, and floating point

numbers. The allowable range of values for these settings is

usually predetermined by software vendors to avoid possible

misconfiguration by users. The performance metric p is

application dependent and can be any measurable variable

such as total execution time, response time, throughput, or

a combination of multiple metrics. In our work, we focus

on total execution time.

Given the above formulation, finding the optimal combi-

nation of settings is a non-trivial task and computationally

infeasible. As such, in this work we present a multi-step

framework that attempts to identify a combination of settings

that is likely to improve the performance most. As there is no

efficient way to verify whether the identified configuration

is optimal or not, we compare the performance improvement

against the default settings.

Figure 1 illustrates the main idea behind our approach.

Briefly, we first apply a sampling method (i.e., Latin hyper-

cube) to reduce the search space and select a predetermined

number of combination of values that are used to benchmark

the system and collect training data. For example, if we

have n settings where each setting can have 10 possible

values, the total number of possibilities is 10n, which is

prohibitive. Therefore, we use Latin hypercube sampling

(LHS) technique to select m combinations (where each com-

bination is a vector (v1, v2, ..., vn)) out of 10n possibilities

to train the system. Note that the training points may or may

not include the combination that improves the performance

most. Once we have the training data, next we split this data
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Configuration Setting Description Group Default
Value

spark.driver.cores Number of cores to use for the driver process Application 1
spark.driver.memory Amount of memory to use for the driver process Application 1GB
spark.executor.cores The number of cores to use on each executor Execution -

spark.executor.memory Amount of memory to use per executor process Application 1GB
spark.default.parallelism Number of partitions in RDDs returned by transformations like join, reduceByKey Execution -
spark.memory.fraction Fraction of (heap space - 300MB) used for execution and storage Memory 0.6

spark.memory.storageFraction Amount of storage memory immune to eviction Memory 0.5
spark.reducer.maxSizeInFlight Maximum size of map outputs to fetch simultaneously from each reduce task Shuffle 48MB

spark.shuffle.compress Whether to compress map output files Shuffle true
spark.shuffle.spill.compress Whether to compress data spilled during shuffles Shuffle true

spark.shuffle.file.buffer Size of the in-memory buffer for each shuffle file output stream Shuffle 32KB
spark.broadcast.blockSize Size of each piece of a block for TorrentBroadcastFactory Execution 4MB

spark.locality.wait How long to wait to launch a data-local task before giving up Scheduling 3s
and launching it on a less-local node

Table I
CONFIGURATION SETTINGS RELATED TO THE PERFORMANCE OF SPARK. IN COLUMN DEFAULT VALUE, SYMBOL “-” DENOTES THAT THE DEFAULT

VALUE IS SUPPLIED BY SPARK IF NOT SET BY USERS.

into a training set and a test set and apply multiple machine

learning techniques (i.e., Artificial Neural Network, Support

Vector Regression, and Decision Trees) to train and test the

accuracy of the corresponding models. This step allows us

to identify the machine learning algorithm that works best

for a specific application (e.g., Word Count, Matrix Factor-

ization). Finally, once we identify the best prediction model

for an application, we leverage that performance model to

identify the combination of settings that may improve the

performance most. Specifically, we use recursive random

search (RRS) algorithm to identify candidate combinations

of configuration settings, and instead of running the system

to get the runtime, we use the performance model identified

in the previous step to predict the runtime of the system.

Once the RRS completes the search process, we run the

system with the recommended combination of settings and

compare it against the actual runtime with the default

settings to determine the improvement in performance. The

details of our approach are below.

A. Step 1: Sampling and Data Collection for Model Training

In this paper, based on our previous work [7] and online

documentation, we identified 11 numerical and 2 Boolean

settings for tuning out of more than 150 settings of Spark

platform (Table I). Note that our framework can consider

more settings if needed.

Before we can train the machine learning models, for a given

application, the next step is to run multiple experiments

to measure the runtime and system metrics for different

combinations of values for the identified 13 settings and

input data size. Note that, by considering the input data size

as a parameter of the model, our approach can be applied

to tune performance under different workloads for the same

application. However, even for 13 settings and the input data

size, the number of possible combinations is exponential

and computationally infeasible. To address this, we initially

looked at Latin hypercube sampling technique to generate

possible combinations of values. However, in the original

LHS design, a specific value of a setting cannot appear

more than once, severely affecting the range of sampled

values that we can consider. For instance, in a system, the

number of CPU cores may have only six possible values

while the number of possible values for fraction of memory

usage can be much larger. In such cases, original LHS

does not allow to generate more than six combinations. To

address this limitation, we designed a modified version of

Latin hypercube sampling, which we call bLHS, to generate

combinations of values for different settings and input data

size that are used to benchmark the system.

To enable bLHS to sample data for both numerical and

Boolean settings, if a system has N settings, the modified

bLHS algorithm first generates samples using original LHS

in a N-dimensional space where each value can be between

0 to 1 (including fractions), which we call binaryLHS
matrix. bLHS then uses the element-wise binary operation

to generate a new matrix where each element is calculated

using the following formula:

LHS[i, j] = lbj + binaryLHS[i, j] ∗ (ubj − lbj) (2)

Here i is the ith row in the LHS matrix, j is the jth

parameter (1 ≤ j ≤ N ), and lbj and ubj are the lower

bound and upper bound for the jth parameter respectively.

If a setting sj is of type Boolean, we have ubj = 1 and lbj
= 0. For a Boolean setting, it is set to True if the value in

the matrix LHS is greater than 0.5. Otherwise, its value is

assigned to False. If a setting requires discrete value then

the corresponding value in the matrix LHS is rounded up.

Once we generate the combinations of values for different

settings, we run the system three times for each combination

and take the average of three runs to minimize the effect of

random variance. The collected data is then used for model

training as explained in the next section.
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B. Step 2: Training and Selection of Configuration Tuning
Model

For model construction, as it is not obvious which technique

will work best, in this paper we look at different ma-

chine learning techniques for configuration tuning, namely,

Artificial Neural Network (ANN), Support Vector Regres-

sion (SVR), and Decision Trees (DT). Among these, we

choose multi-layer ANN, which can be applied either for

classification or regression analysis, due to its ability to

approximate the non-linear relationship between input and

output function, which we expect for certain configuration

settings. Next, we choose SVR [13] which is used for

regression analysis and is shown to provide high prediction

accuracy while minimizing overfitting possibility. Finally,

we choose DT due to its simplicity and explanatory charac-

teristic. While there are many decision trees algorithms for

classification problems (e.g., Iterative Dichotomiser 3 (ID3),

C4.5, C5.0), we choose Classification and Regression Trees

(CART) [6] due to its ability to support continuous variables.

Given the architecture shown in Figure 1, our framework

can be easily extended to work with other machine learning

algorithms.

Data Transformation. After collecting the data, first, we

perform data transformation before training the models. In

particular, we try four techniques, namely, Rescaling, Stan-

dardization, Normalization, and Quantile Transformation.

Rescaling is done to scale a value to a given range (e.g.,

(0,1)). Standardization is done to transform values for a

particular setting so that the values have zero-mean and

unit-variance. Normalization is done to ensure unit norm.

Finally, Quantile Transformation is a type of non-linear

transformation that uses quantile information to transform

to uniform (or normal) distribution3.

Feature Selection. Next, we perform feature selection to

identify the set of “important” features (e.g., configuration

settings) which should be used for training the machine

learning algorithms. Specifically, feature selection is used

to eliminate unimportant (or insignificant) configuration set-

tings to reduce the training time and the likelihood of overfit-

ting. The techniques we investigated include Univariate Fea-

ture Selection (Univariate), Recursive Feature Elimination

(RFE), and Weight-based Feature Importance (Importance).

Univariate Feature Selection selects the set of best features

based on univariate statistical tests such as F-test (Uni-

variate - f-regression) and mutual information (Univariate

- mutual info regression). Recursive Feature Elimination

recursively removes the least important features from the

set of candidate features until a termination condition is

reached. Weight-based Feature Importance selects features

by eliminating features that have importance smaller than a

predefined threshold. To further optimize the performance of

the training phase and boost prediction accuracy, we applied

3http://scikit-learn.org/stable/modules/preprocessing.html

hyper-parameter tuning [17]. In particular, given a hyper-

parameter space which is evenly divided, we use grid search

technique [11] to select the best hyper-parameters based on

score functions such as accuracy score for classification and

R2 score for regression.

Model Training and Selection. To train the model, we split

the collected dataset randomly and use 80% of the data for

training and 20% of the data for testing, and apply cross-

validation technique to test the accuracy of the model. We

repeat this process five times with different random splits

and calculate the average accuracy for each model.

Once we train the set of models (e.g., ANN, SVR, DT) for

a specific application (e.g., Word Count, Triangle Count),

we pick the best model based on mean absolute percentage

error (MAPE). The absolute percentage error (APE) for a

prediction is defined as |P−A
A |*100 where P is the predicted

value and A is the actual value. The mean absolute percent-

age error of a test set which has n data points is defined as∑n
i=1 |Pi−Ai

Ai
|* 100

n . The smaller the value of MAPE is, the

better the performance of the model is.

For comparison purpose, we also report the R2 coefficient of

determination and Root Mean Square Error (RMSE) statistic

for each model. The R2 is defined as R2 = 1 − SSres

SStot

where SSres is the sum of squares of residuals and SStot

is the total sum of squares. SSres is defined as SSres =∑n
1=1(Pi−Ai)

2. SStot is defined as SStot =
∑n

i=1(Ai−Ā)2
where Ā is the mean of the actual values in the test set. R2

indicates the predictive power of a model and a value close

to 1 indicates higher predictive power.

The RMSE statistic is defined as the square root of the mean

square error, which is defined as

∑n

i=1
|Pi−Ai|2
n .

C. Step 3. Configuration Tuning

Once we train the performance prediction models for a given

application, finally we focus on configuration tuning. For

that, we use Random Recursive Search algorithm (RRS) [19]

that identifies the recommended settings based on the fol-

lowing steps. First, RRS samples the search space randomly

to identify “promising” areas that may contain the optimal

value. Next, RRS samples recursively in these areas and

gradually converges to a local optimal value. RRS repeats

these two steps until it meets a stopping criterion. The key

component of RRS is an oracle that has the ability to predict

the performance for a given configuration. In our work, we

use the constructed machine learning models as the oracle.

The algorithm is illustrated in Algorithm 1 which is based on

the recursive random search algorithm introduced in [19]. In

Algorithm 1, x represents a vector which includes the combi-

nation of configuration settings and data set, and y represents

the runtime of Spark. Parameter MAX LOCAL ATTEMPTS
(line 16) is the maximum number of attempts the algorithm

is allowed to try in each local area. The stopping criterion

in our work is determined by the maximum number of

iterations the algorithm can execute (line 5). The selected
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Algorithm 1 ML-based Recursive Random Search

1: Initialize parameters, generate initial samples;

2: x0 ← random sample from global space;

3: best perf so far ← performance model(x0);
4: i ← 0;

5: while i < MAX ITERATIONS do
6: if search local optimum then
7: j = 0;

8: while has a better configuration do
9: x’ ← random sample from local space;

10: y’ ← performance model(x’);
11: if y’ < best perf so far then
12: Update best perf so far and parameters;

13: else
14: j ← j + 1;

15: end if
16: if j = MAX LOCAL ATTEMPTS then
17: Shrink the sample space;

18: Update has a better configuration;

19: end if
20: end while
21: search local optimum ← False;

22: Update best configuration xoptimum;

23: end if
24: x0 ← random sample from global space;

25: if performance model(x0) < best perf so far then
26: search local optimum ← True;

27: end if
28: i ← i + 1;

29: end while

performance model is used to predict the performance for a

given combination of configuration settings (lines 3, 10, and

25).

IV. EVALUATION

To evaluate the presented framework, all experiments were

performed on a cluster of 6 nodes. Each node has 12 CPU

cores, 32 GB of RAM memory, and 1.8 TB hard drive. The

network bandwidth is 1 Gbps. In aggregate, the cluster has

72 cores, 192 GB of RAM memory, and 10.8 TB hard drive.

One node is configured as the master node and the others

as worker nodes for both HDFS and Spark. We used Spark

version 2.0.2 and HDFS version 2.7.1 and set the HDFS

block size to 128 MB and replication factor to 3.

To test the effectiveness of our approach against differ-

ent application types, we used a total of 9 applications.

In particular, we used Word Count (WC) and Tera Sort

(TS) which are well-known batch processing applications,

KMeans (KM), Support Vector Machines (SVM), Matrix

Factorization (MF), and Decision Trees (DT) as examples of

machine learning applications, and PageRank (PR), Triangle

Count (TC), and Connected Component (CC) as examples

Workload Dataset Size Unit

Word Count Wikipedia 50 - 100 GB
Tera Sort Synthetic 400 - 600 million records
KMeans Synthetic 10 - 100 million points

SVM Synthetic 50 - 150 million examples
Matrix Factorization Synthetic 2 - 25 million rows

Decision Trees Synthetic 25 - 75 million examples
PageRank Synthetic 0.1 - 4 million vertices

Triangle Count Synthetic 50 - 500 thousands vertices
Connected Component Synthetic 0.2 - 8 million vertices

Table II
BENCHMARKING DATASET FOR DIFFERENT APPLICATIONS. COLUMN

SIZE CONTAINS THE MINIMUM AND MAXIMUM SIZE FOR EACH

DATASET.

of graph processing applications. Each of these applications

uses different Spark core operators and functions provided

by the machine learning and graph library to implement

the algorithm. Table II presents the characteristics of the

dataset that we used in our experiments. Dataset Wikipedia

is downloaded from Wikimedia website 4. Synthetic datasets

are generated using the data generator classes provided by

the Spark. Our motivation for using these workloads is

two-fold. First, they are representative of different libraries

that Spark supports: MapReduce, machine learning, and

graph computation. Second, they present different Spark

application types: I/O-intensive, CPU-intensive, memory-

intensive, and iterative applications. As such, they allow us

to test the effectiveness of our framework extensively.

For each application, the method bLHS presented in Sec-

tion III-A generates 200 combinations (i.e., it generates a

matrix with 200 rows and 14 columns which represent 13

settings and the input data size).

A. Accuracy of the Performance Models

We evaluate the accuracy of the machine learning methods

based performance models using the approach presented in

section III and workload in Table II. The accuracy scores of

these models are shown in Table III. As per the MAPE score,

we can see that the Decision Trees outperforms the other two

methods for all applications except for KM, MF, and CC,

although the difference is small. Between ANN and SVR,

ANN has better prediction accuracy in most cases except

for KM, MF, and TC.

We can see that the runtime of batch processing applications

such as Word Count and Tera Sort can be predicted with high

accuracy. The prediction accuracy was comparatively worse

for KMeans and Triangle Count, which were found to have

high variance in their runtime.

B. Model Training Overhead

The time for collecting training data is shown under the

column “Sampling Time” in Table III. This is the time we

spent to benchmark Spark where we ran each application 3

times for a given combination of settings as mentioned in

4https://dumps.wikimedia.org/enwiki/
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Workload
ANN SVR DT Sampling Training

MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE Time (hour) Time (minute)

Word Count 19.3 0.80 96.1 37.5 0.4 170.4 10.5 0.95 47.3 84 240
Tera Sort 14.6 0.72 222.9 20.2 0.73 219.4 11.8 0.89 140.0 338 220
KMeans 46.8 0.47 69.7 24.9 0.31 882.3 27.5 0.66 422 268 568

SVM 8.6 0.85 96.8 9.1 0.94 120.2 7.7 0.95 74.3 256 257
Matrix Factorization 9.1 0.92 93.4 8.4 0.94 78.3 10.0 0.86 124.6 298 492

Decision Trees 10.3 0.72 142.6 14.2 0.59 172.6 8.7 0.8 121.7 384 179
PageRank 16.4 0.85 259.13 20.5 0.74 342.3 15.6 0.94 161.9 192 40

Triangle Count 39.9 0.56 551 37.3 0.55 582 36.6 0.64 561 221 208
Connected Component 9.4 0.93 122.1 14.0 0.95 104.1 14.2 0.84 189.0 135 24

Table III
THE MAPE, R2 , AND RMSE VALUES FOR DIFFERENT PERFORMANCE MODELS AND WORKLOADS. SAMPLING TIME AND TRAINING TIME

REPRESENT THE TIME NEEDED FOR COLLECTING TRAINING DATA AND TRAINING THE MACHINE LEARNING MODELS RESPECTIVELY.

Workload ML Method Transformer Feature Selection Number of Features

Word Count DT Quantile Univariate - f-regression 12
Tera Sort DT Standardization Univariate - f-regression 6
KMeans SVR Standardization RFE 14

SVM DT Standardization Univariate - f-regression 5
Matrix Factorization SVR Standardization Univariate - f-regression 11

Decision Trees DT Standardization Univariate - mutual info regression 13
PageRank DT Normalization Univariate - f-regression 14

Triangle Count DT Rescaling Univariate - f-regression 4
Connected Component ANN Standardization Univariate - mutual info regression 7

Table IV
MACHINE LEARNING METHOD, DATA TRANSFORMATION TECHNIQUE, FEATURE SELECTION TECHNIQUE, AND NUMBER OF FEATURES THAT ARE

USED TO CONSTRUCT THE MODEL WITH THE HIGHEST PREDICITON ACCURACY FOR EACH WORKLOAD.

Section III-A. Column “Training Time” in Table III presents

the total time needed to train the machine learning models

for different combinations of machine learning algorithms,

data transformation techniques, and feature selection meth-

ods. The models were trained on a desktop with 4 CPU cores

and 8 GB of RAM memory.

Table IV presents the machine learning algorithm that

exhibits the best performance for each application along

with the type of data transformation technique, the feature

selection method, and the number of features used to train

the model.

Among the four data transformation techniques that were

tested, Standardization is found to be the most effective

for majority of the cases (7/9 cases). For feature selection,

Univariate scheme performed better compared to the other

techniques for all cases except one. We can also see that

the number of important configurations needed to train the

model varies across applications, which is not surprising

given that each application uses different sets of functional-

ities.

C. Feature (i.e., Configuration Setting) Selection and the
Accuracy of the Performance Models

Not surprisingly, the number of features (i.e., configuration

settings) selected to train the model and the type of data

transformation applied have an impact on the accuracy of

the model. Due to space limitation, we only show the

relation between the number of features and MAPE metric

for the Decision Trees algorithm for Word Count application

in Figure 2. The same figure also illustrates the effect of

different data transformation techniques on MAPE.

We varied the number of features from 2 to 14 (i.e., the

total number of features/configuration settings). The figure

shows that Standardization and Quantile transformations

have similar prediction accuracy which is much higher than

the accuracy of Rescaling and Normalization techniques.

When we increase the number of features, the accuracy also

increases significantly initially. However, the model with

the full set of features does not always have the highest

prediction accuracy for all applications.

The effect of different data transformation techniques on

MAPE metric for different machine learning algorithms is

illustrated in Figure 3 - Figure 5. As can be seen, for

some applications such as Page Rank the model with the

appropriate feature transformation outperforms the model

without this preprocessing technique. However, for some

workload such as Matrix Factorization the difference is

small.

D. Set of “Critical” Configuration Settings

The list of the most important settings identified by the best

machine learning algorithm for each application is high-

lighted by bold font in Table VI. Intuitively, as input data

size always affects the runtime of an application, input data

size (not listed in the table) is identified as “critical” for all

applications. Similarly, setting spark.shuffle.compress is

also identified as important for all applications except for

Tera Sort. Notably this setting determines whether Spark

needs to compress map output when performing shuffle

operation and depends on the trade-offs between CPU per-
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formance and network/disk performance. In particular, while

compressing data helps to reduce the size of data sent over

the network or stored on disks, it costs CPU resource to

compress data. Therefore, if the data to be read/written

by shuffle is small then compressing data is likely to

increase the total runtime. Interestingly, the critical set of

configuration settings is different for different applications,

underscoring the importance and need of application specific

performance tuning.

E. Training Data Size and the Prediction Accuracy

To understand the effect of training data size on model

accuracy and the effectiveness of LHS, we used different

fractions of the data for training and testing. In particular,

we split the collected data and used 25%, 50% and 75% for

training and 75%, 50%, and 25% for testing respectively.

For each application, we tested all three different machine

learning algorithms with Standardization transformation and

Univariate feature selection (f-regression) techniques. Fig-

ure 6 and Figure 7 present the MAPE of the best model

for Support Vector Machine and Triangle Count benchmarks

respectively. Due to space limitation, we present the result

for SVM which has the lowest MAPE and TC which has the

highest MAPE. In both cases, when the size of the training

set increases, MAPE for all models decreases, although the

change is not significant in all cases. In particular, when

the size of the training set increases from 25% to 75% for

SVM, MAPE decreases by 3.1% for ANN, 3.0% for SVR,

and 5.1% for DT. The decrease of MAPE for Triangle Count

is larger. When the size of the training set increases from

25% to 75%, MAPE for Matrix Factorization decreases by

13% for ANN, 19% for SVR, and 12% for DT.

F. Performance Tuning

Finally, we compare the performance improvement due to

configuration tuning against the performance of the system

with default configuration. Note that the default value for

spark.driver.cores = 1, spark.driver.memory = 1 GB, and
spark.executor.memory = 1 GB. However, these values are
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Figure 2. MAPE statistic of the performance models for Word Count
application using Decision Trees with different transformation techniques
and Univariate - f-regression feature selection.
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Figure 3. Prediction accuracy of the performance models for different
workloads using Artificial Neural Network.
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Figure 4. Prediction accuracy of the performance models for different
workloads using Support Vector Regression.
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Figure 5. Prediction accuracy of the performance models for different
workloads using Decision Trees.
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Figure 6. Accuracy of the models for various training data sizes for SVM
with Standardization and Univariate feature selection.
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WC TS KM SVM MF DT PR TC CC

Data size 100 GB 500 M 50 M 100 M 10 M 100 M 1.2 M 380 k 3 M
Runtime with default configuration (second) 1,132 3,600 1,920 1,022 510 1,132 1,140 286 630

Runtime with the tuned configuration (second) 860 2,160 1,230 630 306 840 372 174 486
Performance improvement (%) 24.0 40.0 35.7 38.3 40.0 25.7 36.9 39.1 22.8

Tuning Time (minute) 25 30 35 22 26 30 23 28 15

Table V
THE RUNTIME IMPROVEMENT WITH TUNED CONFIGURATION SETTINGS AGAINST THE DEFAULT CONFIGURATION. SYMBOL “M” INDICATES MILLION

AND “K” INDICATES THOUSAND. THE UNIT OF DATA SIZE IS SAME AS SHOWN IN TABLE II. TUNING TIME REPRESENTS THE TIME NEEDED FOR

PERFORMING THE CONFIGURATION TUNING.

Configuration Setting WC TS KM SVM MF DT PR TC CC

spark.driver.cores 8 4 10 8 3 6 5 8 4
spark.driver.memory 12GB 13GB 12GB 14GB 5GB 8GB 2GB 23GB 22GB

spark.executor.memory 18GB 20GB 22GB 24GB 29GB 20GB 21GB 8GB 11GB
spark.reducer.maxSizeInFlight 48MB 48MB 72MB 72MB 96MB 84MB 72MB 48MB 48MB

spark.memory.fraction 0.5 0.6 0.5 0.6 0.8 0.6 0.7 0.6 0.4
spark.memory.storageFraction 0.5 0.4 0.3 0.5 0.7 0.6 0.8 0.4 0.4

spark.executor.cores 9 11 10 11 4 10 7 11 11
spark.shuffle.file.buffer 48KB 64KB 32KB 48KB 64KB 48KB 48KB 64KB 48KB

spark.broadcast.blockSize 4MB 2MB 9MB 6MB 9MB 6MB 4MB 16MB 12MB
spark.default.parallelism 30 23 30 32 20 36 48 29 40

spark.locality.wait 6s 7s 9s 6s 9s 7s 9s 7s 8s
spark.shuffle.compress true true false true false false true true false

spark.shuffle.spill.compress true true true false true false true true true

Table VI
THE TUNED CONFIGURATION SETTINGS FOR EACH APPLICATION. SYMBOL “S” INDICATES ”SECOND”.
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Figure 7. Accuracy of the models for various training data sizes for
Triangle Count with Rescaling and Univariate feature selection.

too small and cause Spark to run inefficiently. Therefore, to

have a realistic comparison, we set spark.driver.cores = 8,

spark.driver.memory = 24 GB, and spark.executor.memory
= 24 GB as default. Therefore, the default configuration

contains the new values for these three settings and the

factory default values for the remaining settings.

The performance improvement for each application is shown

in Table V. The input data size for different applications are

listed in row “Data size.” We compare the runtime of the

system with the default configuration (as explained above)

against the runtime of the system with the recommended

configuration settings and the results are shown in the third

and fourth rows respectively. We can see that our presented

tuning approach can improve the performance of Spark by

22.8% to 40.0%, depending on application. While there is

no available method to verify whether this improvement is

optimal or not, nonetheless, the improvement is significant.

The last row in the table shows the time for tuning the

performance for each application. The tuning time does

not include the time to construct the performance models

as those are created in advance. The tuning time depends

on the number of iterations as illustrated in Algorithm 1.

In this work, we used a predefined maximum number of

iterations. Tuning the value of the maximum number of

iterations that can identify the best configuration is an open

research problem, and is not investigated in this work.

Finally, Table VI lists the value of the optimal config-

uration settings for each application. We can see that

all four machine learning applications require a signif-

icant amount of memory on worker nodes (i.e., setting

spark.executor.memory). In contrast, two out of the three

graph algorithms require the least amount of memory. In-

terestingly, in some cases it actually requires less memory

than what we assigned as default. For example, the Triangle

Count needs only 8 GB of memory while the default

configuration allocated 24 GB of memory.

V. CONCLUSIONS

In this paper we present a framework for tuning the per-

formance of Apache Spark. We evaluated the framework

with different machine learning algorithms as well as dif-

ferent techniques to select the best performance models. By

using a representative set of open source applications, we

demonstrate that the framework can help to improve the

performance of these applications significantly. While this

paper only investigates three machine learning techniques

and one optimization solver, the presented framework can
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be extended to work with other machine learning algorithms

and can be used for different large scale software systems.
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