
2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
419

Predator - An Experience Guided Configuration Optimizer for
Hadoop MapReduce

Kewen Wang, Xuelian Lin, Wenzhong Tang
School of Computer Science and Engineering

Beihang University
Beijing, China

wkw@cse.buaa.edu.cn {linxl, tangwenzhong}@buaa.edu.cn

Abstract — MapReduce is a distributed computing
programming framework which provides an effective solution
to the data processing challenge. As an open-source
implementation of MapReduce, Hadoop has been widely used
in practice. The performance of Hadoop MapReduce heavily
depends on its configuration settings, so tuning these
configuration parameters could be an effective way to improve
its performance. However, picking out the optimal
configuration settings is not easy for the time consuming
nature of MapReduce together with the high dimensional and
nonlinear features of its configuration optimization. In this
paper, we introduce Predator, an experience guided
configuration optimizer, which does not treat the optimization
problem as a pure black-box problem but utilizes useful
experience learnt from Hadoop MapReduce configuration
practice to assist the optimizing process. The optimizer uses
job execution time estimated by a practical MapReduce cost
model as the objective function, and classifies Hadoop
MapReduce parameters into different groups by their different
tunable levels to shrink search space. Furthermore, the
optimization algorithm of the optimizer uses the idea of
subspace division to prevent local optimum problem, and it
could also reduce the searching time by cutting down the cost
in visiting unpromising points in search space. Experiments on
Hadoop clusters demonstrate the effectiveness and efficiency of
the optimizer.

Keywords-MapReduce, Hadoop ,Configuration, Optimization

I. INTRODUCTION

MapReduce [1] is a distributed computing programming
framework which provides an effective solution to the data
processing challenge. As an open-source implementation of
MapReduce, Hadoop [2] has been widely used in practice,
especially for its easy deployment and open source feature.
Many companies have used Hadoop for data mining, user
behavior analysis and scientific simulations. To make full
use of cluster resources including CPU, memory and I/O, it’s
important to optimize Hadoop performance according to
specific applications. Thus issues about Hadoop performance
improvement have been becoming the concern of application
developers, some of whom modify Hadoop core codes to
improve its performance.

Although rewriting the Hadoop codes is the essential
method to make Hadoop adapted to its different applications,
it should not be the general way of optimizing MapReduce

programs because it is time consuming. Fortunately, tuning
Hadoop configuration parameters provides a better way out.
Hadoop has more than 200 configuration parameters, which
decide the overall performance of Hadoop MapReduce.
Among these parameters, about 20 of them significantly
affect MapReduce job performance. Tuning these parameters
is beneficial to Hadoop because appropriate configuration
settings can shorten the job execution time, increase
throughput and reduce I/O or network transmission cost [3].

However, facing so many configuration parameters,
setting proper parameter values to optimize job performance
is tough even to experienced Hadoop developers, who
usually tune each parameter according to their experience
about the parameter’s impact on MapReduce job. Besides,
most parameters have a side effect on job performance,
which means that changing the value of this parameter can
reduce one cost, but might increase other costs as well. For
example, setting the parameter mapred.compress.map.output
to be true (default is false) can reduce the I/O and network
transmission cost by decreasing intermediate data size
transferred from Mappers to Reducers, but add CPU
overhead of the compression and decompression processes.
Moreover, some parameters correlate with each other, the
map-side sorting buffer size is determined by io.sort.mb
whose upper bound is less than JVM heap size which is set
by mapred.child.java.opts. Therefore, there is a need to tune
configuration parameters in a generic way.

Current method [4] to solve this problem is to first
establish a parameter space including all possible values for
each parameter, then to use search algorithm to find the
optimal parameter settings given the objective function. This
method treats Hadoop configuration optimization problem as
a black-box optimization problem [5]. But the objective
function of this configuration optimization problem is
usually high dimensional and nonlinear, so using pure
black-box optimization method to pick out globally optimal
parameter settings is time consuming and inefficient. In
addition, searching through the whole parameter space
without clear direction or suggestion except the objective
function appears neither effective nor efficient.

This paper presents Predator - a Hadoop configuration
optimizer, which combines the parameter tuning experience
with search algorithm. The knowledge of configuration
tuning experiences provides some suggestions during the

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
420

search process. For example, according to this experience,
mapred.tasktracker.map and reduce.tasks.maximum all
should be set to be a value between (cpu_cores_per_node)/2
and 2 × (cpu_cores_per_node) [6], which significantly
decreases the value range of the parameter. Discovering
patterns from the experiences could provide suggestions
about parameter settings while searching the parameter space,
and help shrink the search space through setting specific
value or narrowing the value range for parameters to finally
improve the searching efficiency.

Motivated by these facts, this paper establishes a Hadoop
configuration model to classify these parameters into four
groups. The first group of parameters is merely determined
by general configuration experience; the second group of
parameters could be adjusted given further information about
cluster’s CPU and memory; the third group of parameters
requires job input information to be adjusted; the fourth
group of parameters that have more relations with each other
than the other three groups, should be left to the search
algorithm. And then each group of parameters is
preprocessed according to the features of the specific group.

Besides, this optimizer uses the estimated job execution
time as the objective function, which is applied in our search
algorithm. First we gather the primary information about the
previous job from its history logs and profiling files that
could be obtained by applying BTrace [7]. Then by
analyzing this information, we extract the job properties
relevant to its performance. Based on these job properties
and our cost model, we construct the hypothetical job with
different configurations. And the execution time of the
hypothetical job can be obtained as the objective function.

Moreover, this paper proposes a Grid Hill Climbing
algorithm (GHC) to search for the optimal configuration.
Because Hadoop has about 20 parameters to be optimized,
we need to search in a high dimensional space. The feature
of high time-complexity makes the deterministic algorithms
like branch-and-bound or dynamic programming not suitable
under this circumstance. Since its objective function is not
definite, it’s impossible to describe the objective function in
the form of exact equations. Direct search methods like
Newton’s methods, steepest decent are also not appropriate.
Current methods on this high dimensional optimization
utilize heuristic search algorithms [8]. But heuristic search
algorithms usually have the local optimization problem. To
solve this problem, our algorithm randomly chooses several
most promising points in equally divided parameter
subspaces. Assisted by the general configuration experience,
Grid Hill Climbing algorithm is more efficient than pure
random search algorithm without definite guidance.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III gives the overview of
Predator. Section IV describes the configuration model in
detail and displays the process of adjusting these parameters
in each group. Section V describes the objective function
applied in our search algorithm. Section VI discusses the
existing algorithm solving this problem and provides the
details of Grid Hill Climbing algorithm. Section VII presents
experimental results about Predator. Finally we conclude this
paper in Section VIII.

II. RELATED WORK

The main idea about configuration optimization is to
apply a search algorithm to search through the whole
parameter space according to an objective function, and find
the optimal configuration. These methods always treat this
optimization problem as a pure black-box optimization
problem [9].

In distributed systems, an evolutionary algorithm called
Covariance Matrix Adaptation (CMA) [10] is used to search
for optimal settings and automatically tune configuration in
distributed systems. But the objective function value is
obtained through real system’s running, which takes as many
as 25 minutes. It is time consuming to evaluate objective
function, and limits the number of evaluation. In the context
of Internet services automatic configuration, a parameter
dependency graph [11] is used in searching algorithm to
reduce the searching times, but this method needs several
times of service exercising, which is also a high cost.

To solve large-scale network parameter configuration
problem, an on-line simulation framework [12] is used to
model the network conditions and estimate the job execution
with different settings. It could reduce the cost of objective
function evaluation without running on real network
environment. Besides, in this context, recursive random
search algorithm [13] is applied in the searching process. For
the random sampling feature, it is quick in searching, but this
is also its drawback that has no clear direction.

There is not so much research in Hadoop configuration
optimization. Starfish [4] is an attempt in this field. The
starfish system first collects the previous MapReduce job’s
profile information by BTrace [7], then estimates the virtual
job’s running time through simulating this job’s execution
with different configurations based on the job’s profile
information and a What-If Engine, and searches through the
parameter space to find the optimal configuration settings
with shortest estimated job execution time. Simulating job’s
execution is a better approach to evaluate objective function
with less cost compared with the approach to run real job.
But the search strategy adopted in starfish is recursive
random search algorithm, whose random feature makes it
inefficient in obtaining global optimum.

Practical experience about Hadoop configuration is an
important source of improvement in Hadoop configuration
optimization. An approach in Hadoop performance tuning
methodologies and best practices [14] provides a good
example. It discusses several tuning techniques involving
Hadoop, JVM, OS and BIOS configuration parameters
tuning. Although it is a demo paper, it provides guidelines
for Hadoop parameters configuration, especially for those
parameters relevant to JVM, memory and disk. Corporations
like Intel, IBM and Impetus also give empirical suggestions
about Hadoop configuration in their white papers [6,15,16].

Experience Transfer [17] is an idea to utilize the
configuration knowledge learnt from previous system to
benefit the configuration in another similar system. This
strategy emphasizes the experience transfer between similar
computing systems, and use Bayesian network to apply the
previous experience in current system.

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
421

Our work is different from all the work above. Guided by
the practical experience about Hadoop configuration, we
divide these parameters into separate groups, and use our
search algorithm to find the best parameter settings with
shortest estimated MapReduce job execution time, which is
the objective function based on our cost model.

III. OVERVIEW OF PREDATOR

Hadoop configuration optimization problem is a high
dimensional optimization problem. But it is not a pure
black-box problem because we can obtain suggestions by
learning practical experience about parameter tuning. Such
experience provides useful information about parameter
values or value range of the optimal configuration. Directed
by this experience, optimizing process will be more efficient.

Predator selects 23 parameters that have the most
significant impact on the performance of MapReduce job.
The basic idea of Predator is to preprocess these parameters
according to the configuration model and then use
experience-combined search algorithm to find the optimal
configuration based on the objective function. The execution
overview of Predator is displayed in Fig.1 involving the
following steps.

1) Establish a configuration model to classify these
parameters into four groups according to their
tunable levels on the basis of configuration
experience.

2) Preprocess every parameter on each group by setting
specific value or narrow value range for parameters.

3) Gather previous job’s execution information and
analyze this information to obtain the job properties
relevant to its performance.

4) Based on our cost model and these job properties,
construct the hypothetical jobs with different
configurations for the points in the parameter space,
and obtain each job’s execution time as the objective
function.

5) Divide the parameter space into equal subspaces.
6) Exploit Grid Hill Climbing algorithm (GHC) to

search for optimal configuration settings on the basis
of our objective function.

Figure 1. The Execution Overview of Predator

During the execution of Predator, the configuration
knowledge from previous experience is not only limited in
step 2) as a prior knowledge to filter out unpromising points
in the parameter space, but is also used in step 6) as an
advice to guide searching.

IV. CONFIGURATION MODEL

Learning from the previous experience about Hadoop
configuration, we find that some suggestions about particular
parameters could help us directly determine their optimal
values while some other parameters need extra information
about cluster configuration or job inputs to tune their values,
leaving a few parameters without change. Basically, these
unchanged parameters also have been optimized as their
relevant parameters are adjusted. This configuration model
classifies parameters into the following four groups.

A. Group 1 - Determinable Parameters
Parameters in the first group are merely determined by

the previous experience because many corporations suggest
that these parameters should be set to these values that have
positive impact on job performance. For example, using
LZO compression codec could significantly improve job
performance, which is demonstrated by Intel experiment [6].
Parameters of this group are listed below in Table I which
also gives the suggested values.

B. Group 2 - Cluster Relevant Parameters
Parameters in the second group could be adjusted

according to the information of processor and memory in the
cluster. Parameters of this group are listed in Table II.

In this group, the first and second parameters determine
the maximum number of Map or Reduce tasks that can run
simultaneously on one node (also the number of Map or
Reduce slots). The sum of task slots should be no more than
2 × (cpu_cores_per_node) if each core of CPU supports
simultaneous multi-threading. So the number of Map or
Reduce slots should be between (cpu_cores_per_node)/2 and
2×(cpu_cores_per_node) [6]. Generally, the two parameters
should be set to the same value: cpu_cores_per_node.

The third parameter determines the maximum JVM heap
size allocated to each task. If each work node has both
Datanode and TaskTracker daemons, and each daemon costs
1 GB memory [15], the memory left should be allocated to
Map or Reduce tasks running simultaneously. Usually, this
parameter is set to 80% of the available memory. But if the
total memory of each node is no more than 2 GB, this
parameter should be set to the default value.

The last parameter mapred.reduce.tasks is the number of
Reduce tasks for a job, which should be adjusted in the range
of (0.95~1.75) × mapred.tasktracker.reduce.tasks.maximum,
and we should avoid multiple Reduce waves which is
defined as (the number of Reduce tasks) / (the number of
Reduce slots), because more Reduce waves could add extra
shuffle latency [18]. Thus this parameter is often set to the
number of Reduce slots.

Configuration Model

1. Parameters
Grouping

2. Preprocess
each Group

GHC Algorithm

5. Subspace
Division

6. Search

Objective Function

3. Information
Analysis

4. Job Cost
Estimation

Optimal
Configuration

Previous Job
Information

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
422

C. Group 3 - Input Relevant Parameters
To set the value of parameters in the third group, we need

information on job input, and parameters of this group are
listed in Table III.

The first parameter denotes the minimum size of Map
input split, which indirectly determines the number of Map
tasks because each Map task is allocated a split. Given the
number of Map slots, we should adjust this parameter to
generate multiple Map waves in order to hide shuffle latency
[18], where the Map wave is defined as (the number of Map
tasks) / (the number of Map slots). Besides, the right number
of Map tasks per node is around 10~100. Thus we should
adjust this parameter value according to these principles.

The second and third parameters denote whether we
should turn on speculative execution for Map or Reduce task.
Setting these parameters to be true could decrease some tasks’
execution time by killing slow tasks, but it also reduce the
overall throughput on a busy system for redundant tasks are
executed. So for large job whose tasks’ average execution
time is significant (more than an hour) and the overall
throughput of this system is high, these two parameters
should be set to false [16].

The fourth parameter specifies the number of tasks per
JVM. And the overhead of starting JVM for every task is
around one second. For the tasks whose execution time is
about seconds or a few minutes, setting this value to the
number of total tasks (Map and Reduce tasks) can save much
time for the job.

D. Group 4 - Undeterminable Parameters
Parameters in the fourth group could not be directly

changed from the experience. But these parameters could be
optimized because their relevant parameters are adjusted in
other groups. Moreover, tuning experience also gives
suggestions to adjust these parameters. Parameters of this
group are listed in Table IV.

TABLE I. DETERMINABLE PARAMETERS

No. Name Default
Value

Suggested

1 mapred.output.compress fale true

2 mapred.output.compression.t
ype

RECORD BLOCK

3 mapred.output.compression.c
odec

DefaultCodec LZO

4 mapred.compress.map.out false True

5 mapred.map.output.compress
ion.codec

DefaultCodec LZO

TABLE II. CLUSTER RELEVANT PARAMETERS

No. Name Default
Value

Suggested

1 mapred.tasktracker.map.t
asks.maximum

2 cores/2~2×cores

2 mapred.tasktracker.reduc
e.tasks.maximum

2 cores/2~2×cores

3 mapred.child.java.opts -Xmx200m 80%×Mem

4 mapred.reduce.tasks 1 (0.95~1.75) ×Max

TABLE III. INPUT RELEVANT PARAMETERS

No. Name Default
Value

1 mapred.min.split.size 0

2 mapred.map.tasks.speculative.execution True

3 mapred.reduce.tasks.speculative.execution True

4 mapred.job.reuse.jvm.num.tasks 1

TABLE IV. UNDETERMINABLE PARAMETERS

No. Name Default
Value

1 io.sort.mb 100

2 io.sort.factor 10

3 io.sort.record.percent 0.05

4 io.sort.spill.percent 0.8

5 min.num.spill.for.combine 3

6 mapred.job.shuffle.input.buffer.percent 0.7

7 mapred.job.shuffle.merge.percent 0.66

8 mapred.inmem.merge.threshold 1000

9 mapred.job.reduce.input.buffer.percent 0.0

10 mapred.reduce.slowstart.completed.maps 0.05

The parameter io.sort.mb denotes the sorting buffer size
on the Map side. Increasing this value will generate fewer
spills to the disk, reducing I/O times as a result, but it adds
the memory requirement of each Map task. So we should set
this value according to the available memory. In general, this
value should be set to about 70% of maximum JVM heap
size that is specified by mapred.child.java.opts. The second
parameter specifies the number of streams to merge at once
while sorting files on both Map and Reduce sides. The
greater value it is, the fewer spills and less I/O times there
will be. In addition, we should set this parameter to large
enough to fully utilize the sorting buffer size specified by
io.sort.mb. The following parameter io.sort.record.percent
determines the percent of io.sort.mb dedicated to tracking
record boundaries. The next parameter io.sort.spill.percent is
the threshold for sorting and record buffer. When this
percentage of either buffer has filled, their contents will be
spilled to disk in the background. The parameter
min.num.spill.for.combine is the minimum number of spill
files needed for the combiner to run. When it is set to 3,
combiner will run when there are at least 3 spill files. Setting
this parameter to a large value will reduce data size written
to the disk and decrease I/O times as a result.

The parameter mapred.job.shuffle.input.buffer.percent
represents the percent of maximum JVM heap size that can
be allocated to store Map outputs during the shuffle. Setting
it to the default value (0.7) is sufficient for most job, but to
large job with significant Map outputs, we should set it to
0.8~0.9. Next parameter mapred.job.shuffle.merge.percent
determines the memory threshold at which an in-memory
merge is started, expressed as a percentage of memory
allocated to store Map outputs in memory. And it should be
set to 0.8(more than the default value) according to the
experience. The parameter mapred.inmem.merge.threshold is

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
423

the number of fetched Map outputs in memory before being
merged to disk. And it should be set to a large value when
Map tasks generate many lightweight output files. The
parameter mapred.job.reduce.input.buffer.percent denotes
the percent of maximum JVM heap size to retain Map output
in memory during Reduce. The greater value this parameter
is, the less memory available for Reduce there will be. Thus,
for the job which consumes much memory during Reduce,
this parameter should be set to a small value or 0 by default.
The last parameter is the fraction of the number of Map tasks
that should be complete before Reduce tasks are scheduled
for the job. This parameter has significant impact on Map
and Reduce tasks. If the shuffle phase of Reduce takes long,
we should set this parameter to a small value to hide shuffle
latency, but it will result in task slot occupied by Reduce
very early. If Map tasks’ execution time is much longer than
Reduce tasks, this parameter could be set to a larger value to
hide shuffle latency.

E. Analysis of Configuration Model
After preprocessing these parameters based on the

configuration model, the search space largely shrinks. The
reduction in search space could be demonstrated by the
analysis below.

The number of parameters to be optimized is n, each has
K (0<i <=n) values in its range, so the dimension of this
search space is n, and the total number of points in the space
can be defined as Num = K=1 .

After optimized by the configuration model, c parameters
among them are fixed to a specific value, and d parameters’
value range shrink to (r<1, c<j<=c +d) of the original
range, left other n c d parameters without change. The
total number of the points after optimization is calculated by
Nums= (r × K) × K= + +1

+
=c+1 .

Thus the ratio of improved search space points’ number
to the original search space points’ number is Nums /Num,
suppose R = Nums/Num, R = (1/K) × r+

= +1=1 .
In our configuration model, the total number of

parameters is n = 23. The parameters in the first group are
set to a fixed value, which is selected from two alternatives,
and c = 5. In the second and the third groups, the parameters’
range is narrowed to a smaller one, which is less than the
half of the original range, and d = 8. Therefore, R < 1/213 ,
which is approximately to 0.01%. That’s a significant
decrement in search space.

V. MODEL-BASED OBJECTIVE FUNCTION

Before applying searching algorithm, we should first
define the objective function. The objective function of our
algorithm is defined as the estimated execution time of a
hypothetical job that simulates how the job will execute with
a different configuration generated by the point in parameter
space.

A. Initialization
We first gather primary information of the previous

MapReduce job from its history logs and profiling files that
could be obtained by a dynamic tracing tool BTrace [7].

Then analyze the information to extract job’s performance
relevant properties such as relations between each phase’s
execution time and input data size, dataflow statistics [19]
and so on.

B. Cost Model
According to these important job properties, we could

estimate each task’s execution time of hypothetical job based
on our cost model [20] which defines Map cost and Reduce
cost as vectors.

Map cost vector is defined as:
Tmap = (Tm1_init , Tm2_read , Tm3_net , Tm4_parse ,

Tm5_mapper , Tm6_sort , Tm7_merge , Tm8_serial ,
Tm9_read , Tm10_write). (1)

Reduce cost vector is defined as:
Treduce = (Tr1_init , Tr2_read , Tr3_net , Tr4_merge ,

Tr5_serial , Tr6_io , Tr7_parse , Tr8_reducer ,
Tr9_net , Tr10_write). (2)

Because some sub phases of a task are parallel, the
execution time of one Map task is estimated by:

TMap = Tm1_init
+ Max{Tm2_read , Tm3_net ,(Tm4_parse +Tm5_mapper)}
+ Tm6_sort + Max{Tm7_merge ,Tm9_read }
+ Max {Tm8_serial , Tm10_write }. (3)

And the execution time of a Reduce task is estimated by:
TReduce = Tr1_init

+ Max{(Tr2_read / Min{pCopy, nMap}), Tr3_net }
+ Max{(Tr4_merge +Tr5_serial), Tr6_io }
+ Max{(Tr7_parse + Tr8_reducer), Tr9_net ,

Tr10_write / dRep }. (4)

Where pCopy is mapred.reduce.parallel.copies, nMap is
mapred.map.tasks, and dRep is dfs.replication.

C. Objective Function
Based on this cost model, we could estimate Map and

Reduce execution time separately by:
TimeMap = nM ap ×TMap

nNode × sM
. (5)

TimeReduce = nReduce ×TReduce
nNode × sR

. (6)

Where nNode is the number of work nodes in the cluster,
nReduce is mapred.reduce.tasks, sM is Map slots’ number:
mapred.tasktracker.map.tasks.maximum, and sR is reduce
slots’ number: mapred.tasktracker.map.tasks.maximum.

MapReduce job consists of four phases: Setup, Map,
Reduce, Cleanup, where Setup’s execution time TimeSetup
and Cleanup’s execution time TimeCleanup are constant
time. Thus we could get hypothetical job’s execution time,
which is also the objective function F by:

F = TimeSetup +TimeMap +TimeReduce +TimeCleanup . (7)

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
424

VI. GRID HILL CLIMBING ALGORITHM

For the high dimensional feature of this optimization
problem, current approach [13] is to use heuristic search
algorithm. But heuristic algorithms like Hill Climbing [21]
cannot ensure that the local optimum is approximately the
global optimal solution. In this paper, we propose a Grid Hill
Climbing algorithm to solve this problem by randomly
selecting several promising points in equally divided
subspaces. In this algorithm, we use the practical experience
in searching process.

The Grid Hill Climbing algorithm is described below.
1) Initialize parameters space by modifying some

parameters’ range and value according to the configuration
model based on the previous experience.

2) For each parameter, divide the parameter range into
C non-overlapping intervals with equal possibility. For d
parameters, the space is divided into m (m =) subspaces.

3) Randomly generate a sampling point in each
parameter subspace, and choose n (n <) candidate points

(0<i <=n) with the least value of F (objective function)
from these m samples.

4) For each candidate point (0<i<n), use hill
climbing search to find the best point within the
neighborhood range of .

a) Initialize attempt times t, select as the center
point cp of local search, and set the best point =

b) For each attempt j (0<j<t), find k neighbors of the
center point cp.

i. If the F values of these neighbors are all larger
than the center point’s , set the best point

= cp, go to step 4) to begin next search.
ii. Else obtain the minimum point mp with

minimum F value among k neighbor points
and the center point. Update cp = mp, and set
the best point = mp, go to step b) to start
next attempt.

5) Select the point with minimum F value as the optimal
point op among (0<i<n).

6) Generate the configuration of op as the optimal
configuration.

Generally, sampling is important to heuristic search
algorithms. Hill climbing is efficient in reaching the local
optimum, but it easily falls into the local optimization. The
reason is that the random sampling could not guarantee the
local optimum is also global. Recursive random search [13]
also has this problem, since it makes use of repeat random
sampling to generate start point and neighbor points. This
process may cost extra time in generating points without
getting progress in approaching the promising points or even
optimal point in global.

Our method is to divide the whole searching space into
equal subspaces, and randomly choose one point in every
subspace, so n promising points of which are saved as the
center points that are used later to generate neighbor points

in hill climbing search phase. This technique could ensure
the sampling points at the beginning are global.

In the hill climbing search phase, choosing a good
neighbor searching method is also essential to the efficiency
of the algorithm. In this algorithm, we define the neighbor as
follows:

Every point has d dimensions, each of which is the value
of one parameter. And every center point has at most 2×d
neighbors, which is only different from center point in one
parameter value (smaller or larger). The distance between
each value is one interval equally divided in the value range.
For example, for the points with 2 parameters, suppose point
A=(1,1), the neighbors of A is (1,0), (1,2), (0,1), (2,1) if the
interval is 1 and parameter value is in the range of (0~2).
Besides, this interval is often fine-grained compared with the
interval mentioned in step 2) of our algorithm.

Moreover, this algorithm also takes practical experience
as an advice during searching process by adjusting the
parameter value’s interval. For example, the number of Map
or reduce tasks should be set to multiple of respective task
slots’ number to fully utilize cluster resources. So these
parameters’ values should be changed every certain value,
which is equal to the number of task slots. General
experience also points out the search direction for parameters.
For example, setting io.sort.factor to a larger value is better
than setting it to a smaller one.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup
The experiment is made on a Hadoop cluster of five

nodes running MapReduce job. The physical configuration
of these five nodes is listed below in Table V.

The whole experiment consists of two parts. The first
part is to evaluate the effectiveness of Predator based on the
Configuration Model (CM) and Grid Hill Climbing (GHC)
algorithm. The second part is to evaluate the efficiency of
this optimizer.

B. The Effectiveness
In this part, we compare the MapReduce job’s execution

time using default configuration settings, the configuration
settings suggested by optimization based on Random
Recursive search (RRS) algorithm and Predator based on the
Configuration Model and Grid Hill Climbing algorithm
(GHC-CM).

To show the performance of the job running, we
provide the minimum, mean and maximum values of each
set of test, which is run at least 10 times. Fig.2 uses
WordCount MapReduce program to test the performance of
each job with different configurations. It lists the real job’s
execution time with 1G, 5G, 10G input data (documents
from Wikipedia). The results show that the configuration
suggested by Predator is better than default settings and
configuration suggested by RRS-based optimization. Besides,
even the maximum execution time with configuration
suggested by Predator is less than the minimum execution of
the others, which could further demonstrate the effectiveness
of Predator.

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
425

When comparing the results of RRS and Predator, we
could find the clear advantage of Predator. The improvement
of Predator over RRS-based optimization is more obvious in
Fig.2(c), and in this test, the job performance is even worse
after optimized by RRS. The result is partly from the LZO
compressor which is enabled in configuration settings
suggested by Predator because compression reduces the data
size transferred between these nodes and finally decreases
the I/O cost.

In Fig.2, we also list the experimental results of RRS
combined with our Configuration Model (RRS-CM). The
comparative results of RRS and RRS-CM demonstrate the
power of our configuration model, which preprocesses the
configuration parameters. In Fig.2(c), the improvement of
RRS-CM over RRS is partly attributed to the intermediate
data compression, which is enabled by CM. Besides, the gap
between RRS-CM and Predator (GHC-CM) is also a proof
of our GHC algorithm’s effectiveness in finding better
optimal configuration settings.

In Fig.3, we repeat the experiment of Fig.2 but use a
different program TeraSort (input data is generated by
Hadoop’s TeraGen) to demonstrate the effectiveness of
Predator. In this standard benchmark, Predator shows clearer
advantage over RRS-based optimization. Predator achieves
more than 68% improvement over RRS-based optimization
in Fig.3(b), and this improvement rises to more than 88% in
Fig.3(c). More obvious advantage of our GHC algorithm
compared to the experiments conducted in Fig.2 results from
that TeraSort job stresses more on the balance between
computing and data I/O, which is also Predator’s emphasis.
Besides, the gap between RRS-CM and GHC is larger than
the gap in Fig.2, which further proves the effectiveness of
GHC.

C. The Efficiency
We use TeraSort MapReduce program with 1G input to

evaluate the efficiency of RRS and GHC algorithms. We
apply RRS and GHC algorithms respectively to search for
the optimal configuration in the parameter space. Fig.4
shows the searching time and the number of searches (also
the number of traversed points) for each algorithm, and each
algorithm is repeated 200 times. We could easily observe the
advantage of our searching algorithm GHC. The decrease in
searching time and the number of searches results from the
narrowed space refined by the configuration model and fairly
global searching strategy of GHC. Besides, the data points of
GHC in Fig.4 are more compact than the RRS. This could
demonstrate the stability of GHC.

TABLE V. THE PHYSICAL CONFIGURATION OF THE CLUSTER

No. Node CPU Memory

1 NameNode/JobTracker 2 cores 3.00 GHz 4GB

2 DataNode1/TaskTracker 2 cores 1.86 GHz 2GB

3 DataNode2/TaskTracker 2 cores 2.33 GHz 2GB

4 DataNode3/TaskTracker 2 cores 2.83 GHz 2GB

5 DataNode4/TaskTracker 2 cores 3.20 GHz 4GB

(a) 1G

(b) 5G

(c) 10G

Figure 2. WordCount with different input sizes

(a) 1G

(b) 5G

0

50

100

150

Min Mean Max

Ru
nn

in
g

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

0

100

200

300

400

500

Min Mean Max

Ru
nn

in
g

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

0

200

400

600

800

1000

Min Mean Max

Ru
nn

in
g

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

0
20
40
60
80

100
120
140

Min Mean Max

Ru
nn

in
g

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

0

200

400

600

800

1000

Min Mean Max

Ru
nn

in
g

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
426

(c) 10G

Figure 3. TeraSort with different input sizes

Figure 4. RRS vs GHC in searching time and the number of searches

VIII. CONCLUSION

By learning the practical experience of Hadoop
configuration, we could optimize the Hadoop configuration
with clear direction, not treating this optimization problem as
a pure black optimization problem. The configuration
model’s preprocessing could narrow the searching space, and
a Grid Hill Climbing algorithm makes the local optimum
close to the global optimum by dividing the overall
parameter space into equal subspaces. Experimental results
demonstrate Predator’s effectiveness and efficiency.

Further research could include optimization ideas from
the aspect of resources allocation balancing among cluster
nodes with difference physical capabilities. We are currently
doing the research about MapReduce job scheduling based
on the cost model established by us. Besides, designing a job
description model according to different submitted jobs will
make the implementation of Predator more flexible. And
automatically tuning MapReduce job’s configuration to
optimize the job execution during the running process will
also have a bright perspective.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Proc. 6th Symposium on Operating Systems
Design and Implementation (OSDI 04), Dec. 2004, pp. 137-150.

[2] Apache Hadoop. http://hadoop.apache.org. (2011, Nov. 20).
[3] K. Kambatla, A. Pathak, and H. Pucha, “Towards Optimizing Hadoop

Provisioning in the Cloud,” Proc. First Workshop on Hot Topics in
Cloud Computing, June 2009.

[4] H. Herodotou et al., “Starfish: A Self-tuning System for Big Data
Analytics,” Proc. 5th Biennial Conference on Innovative Data
Systems Research (CIDR 11), Jan. 2011, pp. 261-272.

[5] D.R. Jones, M. Schonlau and W.J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, 13(4), 1998, pp. 455–492.

[6] “Optimizing Hadoop Deployments,” Intel Corp., Oct. 2010.
[7] A Dynamic Instrumentation Tool for Java.

http://kenai.com/projects/btrace. (2012, Feb. 21).
[8] B. Bonet, H. Geffner, “Planning as heuristic search,” Artificial

Intelligence, 2001, 129 (1–2) , pp. 5-33.
[9] B. Xi, Z. Liu, M. Raghavachari, H. Xia, and L. Zhang, “A smart

hill-climbing algorithm for application server configuration,” Proc.
13rd International Conference on World Wide Web (WWW 04), May
2004, pp. 287-296.

[10] A. Saboori, G. Jiang, and H. Chen, “Autotuning configurations in
distributed systems for performance improvements using evolutionary
strategies,” Proc. 28th IEEE International Conference on Distributed
Computing Systems (ICDCS ’08), Dec. 2008, pp.769-776.

[11] W. Zheng, R. Bianchini, and T. D. Nguyen, “Automatic configuration
of internet services,” Proc. EuroSys 2007, March 2007, pp. 219–229.

[12] T. Ye et al., “Traffic management and network control using
collaborative on-line simulation,” Proc. International Conference on
Communication (ICC 01), 2001.

[13] T.Ye, H. T. Kaur, and S. Kalyanaraman, “A Recursive Random
Search Algorithm for Large-Scale Network Parameter Configuration,”
Proc. ACM SIGMETRICS 2003, June 2003.

[14] S. Joshi, “Apache Hadoop Performance-Tuning Methodologies and
Best Practices,” Proc. ACM/SPEC 3rd International Conference on
Performance Engineering (ICPE 12), April 2012, pp. 241-242.

[15] Y. Li, “Analyze and optimize cloud cluster performance - Use
configurable parameters to monitor and tune the performance of a
cloud Hadoop cluster,” IBM Corp., Mar. 2011.

[16] “Hadoop Performance Tuning,” Impetus Technologies Inc, Oct.2009.
[17] H. Chen, W. Zhang, and G. Jiang, “Experience transfer for the

configuration tuning in large-scale computing systems,” Proc. ACM
SIGMETRICS 2009, June 2009.

[18] T. Lipcon. Cloudera: 7 tips for Improving MapReduce Performance.
http://www.cloudera.com/blog/2009/12/7-tips-for-improving-
mapreduce- performance. (2012, Apr. 23).

[19] H. Herodotou and S. Babu, “Profiling, What-if Analysis, and
Cost-based Optimization of MapReduce Programs,” Proc. 37th
International Conference on Very Large Data Bases (VLDB 11),
August 2011.

[20] X. Lin, Z. Meng, C. Xu, M. Wang, “A Practical Performance Model
for Hadoop MapReduce,” Proc. IEEE International Conference on
Cluster Computing Workshops (ClusterW 2012), in press.

[21] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice Hall, 2003.

0

500

1000

1500

2000

2500

Min Mean Max

Ru
nn

in
g

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

2653

500

700

900

1100

1300

1500

1700

800 1000 1200 1400 1600

Se
ar

ch
in

g
tim

e(
m

s)

The number of searches

RRS

GHC

