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Abstract — MapReduce is a distributed computing 
programming framework which provides an effective solution 
to the data processing challenge. As an open-source 
implementation of MapReduce, Hadoop has been widely used 
in practice. The performance of Hadoop MapReduce heavily 
depends on its configuration settings, so tuning these 
configuration parameters could be an effective way to improve 
its performance. However, picking out the optimal 
configuration settings is not easy for the time consuming 
nature of MapReduce together with the high dimensional and 
nonlinear features of its configuration optimization. In this 
paper, we introduce Predator, an experience guided 
configuration optimizer, which does not treat the optimization 
problem as a pure black-box problem but utilizes useful 
experience learnt from Hadoop MapReduce configuration 
practice to assist the optimizing process. The optimizer uses 
job execution time estimated by a practical MapReduce cost 
model as the objective function, and classifies Hadoop
MapReduce parameters into different groups by their different 
tunable levels to shrink search space. Furthermore, the 
optimization algorithm of the optimizer uses the idea of 
subspace division to prevent local optimum problem, and it 
could also reduce the searching time by cutting down the cost 
in visiting unpromising points in search space. Experiments on 
Hadoop clusters demonstrate the effectiveness and efficiency of 
the optimizer.
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I. INTRODUCTION

MapReduce [1] is a distributed computing programming 
framework which provides an effective solution to the data 
processing challenge. As an open-source implementation of 
MapReduce, Hadoop [2] has been widely used in practice,
especially for its easy deployment and open source feature.
Many companies have used Hadoop for data mining, user 
behavior analysis and scientific simulations. To make full 
use of cluster resources including CPU, memory and I/O, it’s
important to optimize Hadoop performance according to 
specific applications. Thus issues about Hadoop performance
improvement have been becoming the concern of application 
developers, some of whom modify Hadoop core codes to
improve its performance.

Although rewriting the Hadoop codes is the essential 
method to make Hadoop adapted to its different applications, 
it should not be the general way of optimizing MapReduce 

programs because it is time consuming. Fortunately, tuning 
Hadoop configuration parameters provides a better way out. 
Hadoop has more than 200 configuration parameters, which
decide the overall performance of Hadoop MapReduce.
Among these parameters, about 20 of them significantly 
affect MapReduce job performance. Tuning these parameters 
is beneficial to Hadoop because appropriate configuration 
settings can shorten the job execution time, increase 
throughput and reduce I/O or network transmission cost [3].

However, facing so many configuration parameters, 
setting proper parameter values to optimize job performance 
is tough even to experienced Hadoop developers, who 
usually tune each parameter according to their experience
about the parameter’s impact on MapReduce job. Besides, 
most parameters have a side effect on job performance, 
which means that changing the value of this parameter can
reduce one cost, but might increase other costs as well. For 
example, setting the parameter mapred.compress.map.output
to be true (default is false) can reduce the I/O and network 
transmission cost by decreasing intermediate data size 
transferred from Mappers to Reducers, but add CPU 
overhead of the compression and decompression processes.
Moreover, some parameters correlate with each other, the 
map-side sorting buffer size is determined by io.sort.mb
whose upper bound is less than JVM heap size which is set 
by mapred.child.java.opts. Therefore, there is a need to tune
configuration parameters in a generic way.

Current method [4] to solve this problem is to first 
establish a parameter space including all possible values for 
each parameter, then to use search algorithm to find the 
optimal parameter settings given the objective function. This
method treats Hadoop configuration optimization problem as 
a black-box optimization problem [5]. But the objective 
function of this configuration optimization problem is 
usually high dimensional and nonlinear, so using pure
black-box optimization method to pick out globally optimal 
parameter settings is time consuming and inefficient. In 
addition, searching through the whole parameter space 
without clear direction or suggestion except the objective 
function appears neither effective nor efficient.

This paper presents Predator - a Hadoop configuration
optimizer, which combines the parameter tuning experience 
with search algorithm. The knowledge of configuration 
tuning experiences provides some suggestions during the 



2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE  
420

search process. For example, according to this experience, 
mapred.tasktracker.map and reduce.tasks.maximum all
should be set to be a value between (cpu_cores_per_node)/2
and 2 × (cpu_cores_per_node) [6], which significantly 
decreases the value range of the parameter. Discovering 
patterns from the experiences could provide suggestions 
about parameter settings while searching the parameter space, 
and help shrink the search space through setting specific 
value or narrowing the value range for parameters to finally
improve the searching efficiency.

Motivated by these facts, this paper establishes a Hadoop 
configuration model to classify these parameters into four 
groups. The first group of parameters is merely determined 
by general configuration experience; the second group of 
parameters could be adjusted given further information about
cluster’s CPU and memory; the third group of parameters 
requires job input information to be adjusted; the fourth 
group of parameters that have more relations with each other 
than the other three groups, should be left to the search 
algorithm. And then each group of parameters is
preprocessed according to the features of the specific group. 

Besides, this optimizer uses the estimated job execution 
time as the objective function, which is applied in our search 
algorithm. First we gather the primary information about the 
previous job from its history logs and profiling files that
could be obtained by applying BTrace [7]. Then by 
analyzing this information, we extract the job properties 
relevant to its performance. Based on these job properties 
and our cost model, we construct the hypothetical job with 
different configurations. And the execution time of the
hypothetical job can be obtained as the objective function.

Moreover, this paper proposes a Grid Hill Climbing 
algorithm (GHC) to search for the optimal configuration.
Because Hadoop has about 20 parameters to be optimized,
we need to search in a high dimensional space. The feature 
of high time-complexity makes the deterministic algorithms 
like branch-and-bound or dynamic programming not suitable 
under this circumstance. Since its objective function is not 
definite, it’s impossible to describe the objective function in 
the form of exact equations. Direct search methods like 
Newton’s methods, steepest decent are also not appropriate. 
Current methods on this high dimensional optimization 
utilize heuristic search algorithms [8]. But heuristic search 
algorithms usually have the local optimization problem. To 
solve this problem, our algorithm randomly chooses several 
most promising points in equally divided parameter 
subspaces. Assisted by the general configuration experience, 
Grid Hill Climbing algorithm is more efficient than pure 
random search algorithm without definite guidance.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III gives the overview of 
Predator. Section IV describes the configuration model in 
detail and displays the process of adjusting these parameters 
in each group. Section V describes the objective function 
applied in our search algorithm. Section VI discusses the 
existing algorithm solving this problem and provides the 
details of Grid Hill Climbing algorithm. Section VII presents
experimental results about Predator. Finally we conclude this 
paper in Section VIII.

II. RELATED WORK

The main idea about configuration optimization is to 
apply a search algorithm to search through the whole 
parameter space according to an objective function, and find
the optimal configuration. These methods always treat this 
optimization problem as a pure black-box optimization 
problem [9].

In distributed systems, an evolutionary algorithm called 
Covariance Matrix Adaptation (CMA) [10] is used to search 
for optimal settings and automatically tune configuration in 
distributed systems. But the objective function value is 
obtained through real system’s running, which takes as many 
as 25 minutes. It is time consuming to evaluate objective 
function, and limits the number of evaluation. In the context 
of Internet services automatic configuration, a parameter 
dependency graph [11] is used in searching algorithm to 
reduce the searching times, but this method needs several 
times of service exercising, which is also a high cost.

To solve large-scale network parameter configuration
problem, an on-line simulation framework [12] is used to 
model the network conditions and estimate the job execution 
with different settings. It could reduce the cost of objective 
function evaluation without running on real network 
environment. Besides, in this context, recursive random 
search algorithm [13] is applied in the searching process. For 
the random sampling feature, it is quick in searching, but this 
is also its drawback that has no clear direction.

There is not so much research in Hadoop configuration 
optimization. Starfish [4] is an attempt in this field. The 
starfish system first collects the previous MapReduce job’s
profile information by BTrace [7], then estimates the virtual 
job’s running time through simulating this job’s execution 
with different configurations based on the job’s profile 
information and a What-If Engine, and searches through the 
parameter space to find the optimal configuration settings
with shortest estimated job execution time. Simulating job’s
execution is a better approach to evaluate objective function 
with less cost compared with the approach to run real job.
But the search strategy adopted in starfish is recursive 
random search algorithm, whose random feature makes it 
inefficient in obtaining global optimum.

Practical experience about Hadoop configuration is an 
important source of improvement in Hadoop configuration 
optimization. An approach in Hadoop performance tuning 
methodologies and best practices [14] provides a good
example. It discusses several tuning techniques involving 
Hadoop, JVM, OS and BIOS configuration parameters 
tuning. Although it is a demo paper, it provides guidelines 
for Hadoop parameters configuration, especially for those 
parameters relevant to JVM, memory and disk. Corporations 
like Intel, IBM and Impetus also give empirical suggestions 
about Hadoop configuration in their white papers [6,15,16].

Experience Transfer [17] is an idea to utilize the 
configuration knowledge learnt from previous system to 
benefit the configuration in another similar system. This 
strategy emphasizes the experience transfer between similar
computing systems, and use Bayesian network to apply the 
previous experience in current system.
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Our work is different from all the work above. Guided by 
the practical experience about Hadoop configuration, we 
divide these parameters into separate groups, and use our 
search algorithm to find the best parameter settings with 
shortest estimated MapReduce job execution time, which is 
the objective function based on our cost model.

III. OVERVIEW OF PREDATOR

Hadoop configuration optimization problem is a high
dimensional optimization problem. But it is not a pure 
black-box problem because we can obtain suggestions by
learning practical experience about parameter tuning. Such
experience provides useful information about parameter 
values or value range of the optimal configuration. Directed 
by this experience, optimizing process will be more efficient.

Predator selects 23 parameters that have the most 
significant impact on the performance of MapReduce job.
The basic idea of Predator is to preprocess these parameters 
according to the configuration model and then use
experience-combined search algorithm to find the optimal 
configuration based on the objective function. The execution 
overview of Predator is displayed in Fig.1 involving the 
following steps.

1) Establish a configuration model to classify these 
parameters into four groups according to their 
tunable levels on the basis of configuration
experience.

2) Preprocess every parameter on each group by setting
specific value or narrow value range for parameters.

3) Gather previous job’s execution information and 
analyze this information to obtain the job properties 
relevant to its performance.

4) Based on our cost model and these job properties, 
construct the hypothetical jobs with different 
configurations for the points in the parameter space,
and obtain each job’s execution time as the objective 
function.

5) Divide the parameter space into equal subspaces.
6) Exploit Grid Hill Climbing algorithm (GHC) to

search for optimal configuration settings on the basis 
of our objective function.

Figure 1. The Execution Overview of Predator

During the execution of Predator, the configuration 
knowledge from previous experience is not only limited in 
step 2) as a prior knowledge to filter out unpromising points 
in the parameter space, but is also used in step 6) as an 
advice to guide searching.

IV. CONFIGURATION MODEL

Learning from the previous experience about Hadoop 
configuration, we find that some suggestions about particular 
parameters could help us directly determine their optimal
values while some other parameters need extra information
about cluster configuration or job inputs to tune their values,
leaving a few parameters without change. Basically, these 
unchanged parameters also have been optimized as their 
relevant parameters are adjusted. This configuration model 
classifies parameters into the following four groups.

A. Group 1 - Determinable Parameters
Parameters in the first group are merely determined by 

the previous experience because many corporations suggest 
that these parameters should be set to these values that have 
positive impact on job performance. For example, using 
LZO compression codec could significantly improve job 
performance, which is demonstrated by Intel experiment [6].
Parameters of this group are listed below in Table I which 
also gives the suggested values.

B. Group 2 - Cluster Relevant Parameters
Parameters in the second group could be adjusted 

according to the information of processor and memory in the 
cluster. Parameters of this group are listed in Table II.

In this group, the first and second parameters determine 
the maximum number of Map or Reduce tasks that can run 
simultaneously on one node (also the number of Map or
Reduce slots). The sum of task slots should be no more than
2 × (cpu_cores_per_node) if each core of CPU supports
simultaneous multi-threading. So the number of Map or
Reduce slots should be between (cpu_cores_per_node)/2 and 
2×(cpu_cores_per_node) [6]. Generally, the two parameters
should be set to the same value: cpu_cores_per_node. 

The third parameter determines the maximum JVM heap 
size allocated to each task. If each work node has both
Datanode and TaskTracker daemons, and each daemon costs
1 GB memory [15], the memory left should be allocated to
Map or Reduce tasks running simultaneously. Usually, this
parameter is set to 80% of the available memory. But if the 
total memory of each node is no more than 2 GB, this 
parameter should be set to the default value.

The last parameter mapred.reduce.tasks is the number of
Reduce tasks for a job, which should be adjusted in the range 
of (0.95~1.75) × mapred.tasktracker.reduce.tasks.maximum,
and we should avoid multiple Reduce waves which is 
defined as (the number of Reduce tasks) / (the number of
Reduce slots), because more Reduce waves could add extra 
shuffle latency [18]. Thus this parameter is often set to the 
number of Reduce slots.

Configuration Model
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each Group

GHC Algorithm
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Division

6. Search
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3. Information
Analysis

4. Job Cost
Estimation
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C. Group 3 - Input Relevant Parameters
To set the value of parameters in the third group, we need

information on job input, and parameters of this group are
listed in Table III.

The first parameter denotes the minimum size of Map 
input split, which indirectly determines the number of Map 
tasks because each Map task is allocated a split. Given the 
number of Map slots, we should adjust this parameter to 
generate multiple Map waves in order to hide shuffle latency 
[18], where the Map wave is defined as (the number of Map 
tasks) / (the number of Map slots). Besides, the right number
of Map tasks per node is around 10~100. Thus we should 
adjust this parameter value according to these principles. 

The second and third parameters denote whether we 
should turn on speculative execution for Map or Reduce task. 
Setting these parameters to be true could decrease some tasks’
execution time by killing slow tasks, but it also reduce the 
overall throughput on a busy system for redundant tasks are
executed. So for large job whose tasks’ average execution 
time is significant (more than an hour) and the overall
throughput of this system is high, these two parameters 
should be set to false [16].

The fourth parameter specifies the number of tasks per 
JVM. And the overhead of starting JVM for every task is 
around one second. For the tasks whose execution time is 
about seconds or a few minutes, setting this value to the 
number of total tasks (Map and Reduce tasks) can save much
time for the job.

D. Group 4 - Undeterminable Parameters
Parameters in the fourth group could not be directly 

changed from the experience. But these parameters could be
optimized because their relevant parameters are adjusted in 
other groups. Moreover, tuning experience also gives 
suggestions to adjust these parameters. Parameters of this 
group are listed in Table IV.

TABLE I. DETERMINABLE PARAMETERS

No. Name Default 
Value

Suggested 

1 mapred.output.compress fale true

2 mapred.output.compression.t
ype

RECORD BLOCK

3 mapred.output.compression.c
odec

DefaultCodec LZO

4 mapred.compress.map.out false True

5 mapred.map.output.compress
ion.codec

DefaultCodec LZO

TABLE II. CLUSTER RELEVANT PARAMETERS

No. Name Default 
Value

Suggested

1 mapred.tasktracker.map.t
asks.maximum

2 cores/2~2×cores 

2 mapred.tasktracker.reduc
e.tasks.maximum

2 cores/2~2×cores 

3 mapred.child.java.opts -Xmx200m 80%×Mem

4 mapred.reduce.tasks 1 (0.95~1.75) ×Max

TABLE III. INPUT RELEVANT PARAMETERS

No. Name Default 
Value

1 mapred.min.split.size 0

2 mapred.map.tasks.speculative.execution True

3 mapred.reduce.tasks.speculative.execution True

4 mapred.job.reuse.jvm.num.tasks 1

TABLE IV. UNDETERMINABLE PARAMETERS

No. Name Default 
Value

1 io.sort.mb 100

2 io.sort.factor 10

3 io.sort.record.percent 0.05

4 io.sort.spill.percent 0.8

5 min.num.spill.for.combine 3

6 mapred.job.shuffle.input.buffer.percent 0.7

7 mapred.job.shuffle.merge.percent 0.66

8 mapred.inmem.merge.threshold 1000

9 mapred.job.reduce.input.buffer.percent 0.0

10 mapred.reduce.slowstart.completed.maps 0.05

The parameter io.sort.mb denotes the sorting buffer size 
on the Map side. Increasing this value will generate fewer 
spills to the disk, reducing I/O times as a result, but it adds 
the memory requirement of each Map task. So we should set 
this value according to the available memory. In general, this 
value should be set to about 70% of maximum JVM heap 
size that is specified by mapred.child.java.opts. The second 
parameter specifies the number of streams to merge at once
while sorting files on both Map and Reduce sides. The 
greater value it is, the fewer spills and less I/O times there 
will be. In addition, we should set this parameter to large 
enough to fully utilize the sorting buffer size specified by 
io.sort.mb. The following parameter io.sort.record.percent
determines the percent of io.sort.mb dedicated to tracking 
record boundaries. The next parameter io.sort.spill.percent is
the threshold for sorting and record buffer. When this 
percentage of either buffer has filled, their contents will be 
spilled to disk in the background. The parameter 
min.num.spill.for.combine is the minimum number of spill 
files needed for the combiner to run. When it is set to 3, 
combiner will run when there are at least 3 spill files. Setting 
this parameter to a large value will reduce data size written 
to the disk and decrease I/O times as a result.

The parameter mapred.job.shuffle.input.buffer.percent
represents the percent of maximum JVM heap size that can 
be allocated to store Map outputs during the shuffle. Setting 
it to the default value (0.7) is sufficient for most job, but to 
large job with significant Map outputs, we should set it to 
0.8~0.9. Next parameter mapred.job.shuffle.merge.percent
determines the memory threshold at which an in-memory 
merge is started, expressed as a percentage of memory 
allocated to store Map outputs in memory. And it should be 
set to 0.8(more than the default value) according to the 
experience. The parameter mapred.inmem.merge.threshold is
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the number of fetched Map outputs in memory before being 
merged to disk. And it should be set to a large value when 
Map tasks generate many lightweight output files. The 
parameter mapred.job.reduce.input.buffer.percent denotes
the percent of maximum JVM heap size to retain Map output 
in memory during Reduce. The greater value this parameter
is, the less memory available for Reduce there will be. Thus, 
for the job which consumes much memory during Reduce, 
this parameter should be set to a small value or 0 by default. 
The last parameter is the fraction of the number of Map tasks
that should be complete before Reduce tasks are scheduled
for the job. This parameter has significant impact on Map
and Reduce tasks. If the shuffle phase of Reduce takes long, 
we should set this parameter to a small value to hide shuffle
latency, but it will result in task slot occupied by Reduce 
very early. If Map tasks’ execution time is much longer than 
Reduce tasks, this parameter could be set to a larger value to 
hide shuffle latency.

E. Analysis of Configuration Model 
After preprocessing these parameters based on the 

configuration model, the search space largely shrinks. The 
reduction in search space could be demonstrated by the 
analysis below.

The number of parameters to be optimized is n, each has 
K (0<i <=n) values in its range, so the dimension of this 
search space is n, and the total number of points in the space 
can be defined as Num = K=1 .

After optimized by the configuration model, c parameters 
among them are fixed to a specific value, and d parameters’
value range shrink to (r<1, c<j<=c +d) of the original 
range, left other n c d parameters without change. The 
total number of the points after optimization is calculated by
Nums= (r × K ) × K= + +1

+
=c+1 .

Thus the ratio of improved search space points’ number 
to the original search space points’ number is Nums /Num, 
suppose R = Nums/Num, R = (1/K ) × r+

= +1=1 .
In our configuration model, the total number of 

parameters is n = 23. The parameters in the first group are 
set to a fixed value, which is selected from two alternatives,
and c = 5. In the second and the third groups, the parameters’
range is narrowed to a smaller one, which is less than the 
half of the original range, and d = 8. Therefore, R < 1/213 ,
which is approximately to 0.01%. That’s a significant 
decrement in search space.

V. MODEL-BASED OBJECTIVE FUNCTION

Before applying searching algorithm, we should first 
define the objective function. The objective function of our 
algorithm is defined as the estimated execution time of a
hypothetical job that simulates how the job will execute with 
a different configuration generated by the point in parameter 
space.

A. Initialization
We first gather primary information of the previous 

MapReduce job from its history logs and profiling files that
could be obtained by a dynamic tracing tool BTrace [7].

Then analyze the information to extract job’s performance 
relevant properties such as relations between each phase’s
execution time and input data size, dataflow statistics [19]
and so on.

B. Cost Model
According to these important job properties, we could

estimate each task’s execution time of hypothetical job based 
on our cost model [20] which defines Map cost and Reduce 
cost as vectors.

Map cost vector is defined as:
Tmap = (Tm1_init , Tm2_read , Tm3_net , Tm4_parse ,

Tm5_mapper , Tm6_sort , Tm7_merge , Tm8_serial ,
Tm9_read , Tm10_write ).                  (1)

Reduce cost vector is defined as:
Treduce = (Tr1_init , Tr2_read , Tr3_net , Tr4_merge ,

Tr5_serial , Tr6_io , Tr7_parse , Tr8_reducer ,
Tr9_net , Tr10_write ).                   (2)

Because some sub phases of a task are parallel, the 
execution time of one Map task is estimated by:

TMap = Tm1_init
+ Max{Tm2_read , Tm3_net ,(Tm4_parse +Tm5_mapper )}
+ Tm6_sort + Max{Tm7_merge ,Tm9_read }
+ Max {Tm8_serial , Tm10_write }.     (3)

And the execution time of a Reduce task is estimated by:
TReduce = Tr1_init

+ Max{(Tr2_read  / Min{pCopy, nMap}), Tr3_net }
+ Max{(Tr4_merge +Tr5_serial ), Tr6_io }
+ Max{(Tr7_parse + Tr8_reducer ), Tr9_net ,

Tr10_write  / dRep }.      (4)

Where pCopy is mapred.reduce.parallel.copies, nMap is 
mapred.map.tasks, and dRep is dfs.replication.

C. Objective Function
Based on this cost model, we could estimate Map and 

Reduce execution time separately by:
TimeMap = nM ap  ×TMap  

nNode  × sM
.             (5)

TimeReduce = nReduce  ×TReduce
nNode  × sR

.       (6)

Where nNode is the number of work nodes in the cluster, 
nReduce is mapred.reduce.tasks, sM is Map slots’ number: 
mapred.tasktracker.map.tasks.maximum, and sR is reduce 
slots’ number: mapred.tasktracker.map.tasks.maximum. 

MapReduce job consists of four phases: Setup, Map, 
Reduce, Cleanup, where Setup’s execution time TimeSetup
and Cleanup’s execution time TimeCleanup are constant 
time. Thus we could get hypothetical job’s execution time, 
which is also the objective function F by:

F = TimeSetup  +TimeMap +TimeReduce +TimeCleanup . (7)
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VI. GRID HILL CLIMBING ALGORITHM

For the high dimensional feature of this optimization 
problem, current approach [13] is to use heuristic search 
algorithm. But heuristic algorithms like Hill Climbing [21]
cannot ensure that the local optimum is approximately the 
global optimal solution. In this paper, we propose a Grid Hill 
Climbing algorithm to solve this problem by randomly 
selecting several promising points in equally divided 
subspaces. In this algorithm, we use the practical experience 
in searching process.

The Grid Hill Climbing algorithm is described below.
1) Initialize parameters space by modifying some 

parameters’ range and value according to the configuration 
model based on the previous experience.

2) For each parameter, divide the parameter range into 
C non-overlapping intervals with equal possibility. For d
parameters, the space is divided into m (m = ) subspaces.

3) Randomly generate a sampling point in each 
parameter subspace, and choose n (n < ) candidate points 

(0<i <=n) with the least value of F (objective function) 
from these m samples.

4) For each candidate point  (0<i<n), use hill 
climbing search to find the best point within the 
neighborhood range of  .

a) Initialize attempt times t, select as the center 
point cp of local search, and set the best point =

b) For each attempt j (0<j<t), find k neighbors of the 
center point cp.

i. If the F values of these neighbors are all larger 
than the center point’s , set the best point

= cp, go to step 4) to begin next search.
ii. Else obtain the minimum point mp with 

minimum F value among k neighbor points 
and the center point. Update cp = mp, and set 
the best point = mp, go to step b) to start
next attempt.

5) Select the point with minimum F value as the optimal 
point op among  (0<i<n).

6) Generate the configuration of op as the optimal 
configuration.

Generally, sampling is important to heuristic search 
algorithms. Hill climbing is efficient in reaching the local
optimum, but it easily falls into the local optimization. The 
reason is that the random sampling could not guarantee the 
local optimum is also global. Recursive random search [13]
also has this problem, since it makes use of repeat random 
sampling to generate start point and neighbor points. This 
process may cost extra time in generating points without
getting progress in approaching the promising points or even 
optimal point in global.

Our method is to divide the whole searching space into 
equal subspaces, and randomly choose one point in every 
subspace, so n promising points of which are saved as the 
center points that are used later to generate neighbor points 

in hill climbing search phase. This technique could ensure 
the sampling points at the beginning are global.

In the hill climbing search phase, choosing a good 
neighbor searching method is also essential to the efficiency 
of the algorithm. In this algorithm, we define the neighbor as
follows:

Every point has d dimensions, each of which is the value 
of one parameter. And every center point has at most 2×d 
neighbors, which is only different from center point in one 
parameter value (smaller or larger). The distance between 
each value is one interval equally divided in the value range. 
For example, for the points with 2 parameters, suppose point 
A=(1,1), the neighbors of A is (1,0), (1,2), (0,1), (2,1) if the 
interval is 1 and parameter value is in the range of (0~2). 
Besides, this interval is often fine-grained compared with the 
interval mentioned in step 2) of our algorithm.

Moreover, this algorithm also takes practical experience 
as an advice during searching process by adjusting the 
parameter value’s interval. For example, the number of Map
or reduce tasks should be set to multiple of respective task 
slots’ number to fully utilize cluster resources. So these 
parameters’ values should be changed every certain value, 
which is equal to the number of task slots. General
experience also points out the search direction for parameters. 
For example, setting io.sort.factor to a larger value is better 
than setting it to a smaller one.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup
The experiment is made on a Hadoop cluster of five

nodes running MapReduce job. The physical configuration 
of these five nodes is listed below in Table V.

The whole experiment consists of two parts. The first 
part is to evaluate the effectiveness of Predator based on the 
Configuration Model (CM) and Grid Hill Climbing (GHC) 
algorithm. The second part is to evaluate the efficiency of 
this optimizer.

B. The Effectiveness
In this part, we compare the MapReduce job’s execution 

time using default configuration settings, the configuration 
settings suggested by optimization based on Random 
Recursive search (RRS) algorithm and Predator based on the 
Configuration Model and Grid Hill Climbing algorithm 
(GHC-CM). 

To show the performance of the job running, we 
provide the minimum, mean and maximum values of each 
set of test, which is run at least 10 times. Fig.2 uses
WordCount MapReduce program to test the performance of 
each job with different configurations. It lists the real job’s
execution time with 1G, 5G, 10G input data (documents 
from Wikipedia). The results show that the configuration 
suggested by Predator is better than default settings and 
configuration suggested by RRS-based optimization. Besides, 
even the maximum execution time with configuration
suggested by Predator is less than the minimum execution of 
the others, which could further demonstrate the effectiveness
of Predator.
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When comparing the results of RRS and Predator, we 
could find the clear advantage of Predator. The improvement 
of Predator over RRS-based optimization is more obvious in 
Fig.2(c), and in this test, the job performance is even worse 
after optimized by RRS. The result is partly from the LZO
compressor which is enabled in configuration settings
suggested by Predator because compression reduces the data 
size transferred between these nodes and finally decreases
the I/O cost.

In Fig.2, we also list the experimental results of RRS 
combined with our Configuration Model (RRS-CM). The 
comparative results of RRS and RRS-CM demonstrate the 
power of our configuration model, which preprocesses the 
configuration parameters. In Fig.2(c), the improvement of 
RRS-CM over RRS is partly attributed to the intermediate 
data compression, which is enabled by CM. Besides, the gap 
between RRS-CM and Predator (GHC-CM) is also a proof 
of our GHC algorithm’s effectiveness in finding better 
optimal configuration settings.

In Fig.3, we repeat the experiment of Fig.2 but use a
different program TeraSort (input data is generated by 
Hadoop’s TeraGen) to demonstrate the effectiveness of 
Predator. In this standard benchmark, Predator shows clearer 
advantage over RRS-based optimization. Predator achieves 
more than 68% improvement over RRS-based optimization 
in Fig.3(b), and this improvement rises to more than 88% in 
Fig.3(c). More obvious advantage of our GHC algorithm 
compared to the experiments conducted in Fig.2 results from
that TeraSort job stresses more on the balance between 
computing and data I/O, which is also Predator’s emphasis. 
Besides, the gap between RRS-CM and GHC is larger than 
the gap in Fig.2, which further proves the effectiveness of
GHC.

C. The Efficiency 
We use TeraSort MapReduce program with 1G input to 

evaluate the efficiency of RRS and GHC algorithms. We 
apply RRS and GHC algorithms respectively to search for 
the optimal configuration in the parameter space. Fig.4
shows the searching time and the number of searches (also 
the number of traversed points) for each algorithm, and each 
algorithm is repeated 200 times. We could easily observe the 
advantage of our searching algorithm GHC. The decrease in 
searching time and the number of searches results from the 
narrowed space refined by the configuration model and fairly 
global searching strategy of GHC. Besides, the data points of 
GHC in Fig.4 are more compact than the RRS. This could 
demonstrate the stability of GHC.

TABLE V. THE PHYSICAL CONFIGURATION OF THE CLUSTER

No. Node CPU Memory

1 NameNode/JobTracker 2 cores 3.00 GHz 4GB

2 DataNode1/TaskTracker 2 cores 1.86 GHz 2GB

3 DataNode2/TaskTracker 2 cores 2.33 GHz 2GB

4 DataNode3/TaskTracker 2 cores 2.83 GHz 2GB

5 DataNode4/TaskTracker 2 cores 3.20 GHz 4GB

 
(a) 1G

 
(b) 5G

 
(c) 10G

Figure 2. WordCount with different input sizes

 
(a) 1G

 
(b) 5G

0

50

100

150

Min Mean Max

Ru
nn

in
g 

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

0

100

200

300

400

500

Min Mean Max

Ru
nn

in
g 

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

0

200

400

600

800

1000

Min Mean Max

Ru
nn

in
g 

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

0
20
40
60
80

100
120
140

Min Mean Max

Ru
nn

in
g 

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM

0

200

400

600

800

1000

Min Mean Max

Ru
nn

in
g 

 T
im

e(
se

c)

Default

RRS

Predator

RRS-CM



2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE  
426

 
(c) 10G

Figure 3. TeraSort with different input sizes

Figure 4. RRS vs GHC in searching time and the number of searches

VIII. CONCLUSION

By learning the practical experience of Hadoop 
configuration, we could optimize the Hadoop configuration 
with clear direction, not treating this optimization problem as
a pure black optimization problem. The configuration 
model’s preprocessing could narrow the searching space, and 
a Grid Hill Climbing algorithm makes the local optimum 
close to the global optimum by dividing the overall
parameter space into equal subspaces. Experimental results 
demonstrate Predator’s effectiveness and efficiency.

Further research could include optimization ideas from 
the aspect of resources allocation balancing among cluster 
nodes with difference physical capabilities. We are currently
doing the research about MapReduce job scheduling based 
on the cost model established by us. Besides, designing a job 
description model according to different submitted jobs will 
make the implementation of Predator more flexible. And 
automatically tuning MapReduce job’s configuration to 
optimize the job execution during the running process will
also have a bright perspective.
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