
Performance Prediction for Apache Spark Platform

Kewen Wang

Department of Computer Science and Engineering
University of Connecticut, Storrs, Connecticut, USA

kewen.wang@uconn.edu

Mohammad Maifi Hasan Khan

Department of Computer Science and Engineering
University of Connecticut, Storrs, Connecticut, USA

maifi.khan@engr.uconn.edu

Abstract—Apache Spark is an open source distributed data
processing platform that uses distributed memory abstraction
to process large volume of data efficiently. However, perfor-
mance of a particular job on Apache Spark platform can vary
significantly depending on the input data type and size, design
and implementation of the algorithm, and computing capabil-
ity, making it extremely difficult to predict the performance
metric of a job such as execution time, memory footprint, and
I/O cost. To address this challenge, in this paper, we present
a simulation driven prediction model that can predict job
performance with high accuracy for Apache Spark platform.
Specifically, as Apache spark jobs are often consist of multiple
sequential stages, the presented prediction model simulates the
execution of the actual job by using only a fraction of the input
data, and collect execution traces (e.g., I/O overhead, memory
consumption, execution time) to predict job performance for
each execution stage individually. We evaluated our prediction
framework using four real-life applications on a 13 node cluster,
and experimental results show that the model can achieve high
prediction accuracy.

Keywords-Apache Spark; Performance Modeling; Execution
Time Prediction

I. INTRODUCTION

Among many cloud computing platforms, Apache Spark [1]

is one of the popular open-source cloud platforms that intro-

duces the concept of resilient distributed datasets (RDDs) [2]

to enable fast processing of large volume of data leveraging

distributed memory. Its in-memory data operations makes

it well-suited for iterative applications such as iterative

machine learning and graph algorithms. However, execu-

tion time of a particular job on Apache Spark platform

can vary significantly depending on the input data type

and size, design and implementation of the algorithm, and

computing capability (e.g., number of nodes, CPU speed,

memory size), making it extremely difficult to predict job

performance, which is often needed to optimize resource

allocation [3] [4]. Performance prediction can also help

to locate execution stages with abnormal resource usage

pattern [5]. While prior work exists that looked into the

problem of performance prediction for cloud platforms such

as Apache Hadoop [6] (an open-source implementation of

MapReduce [7] computing framework), these approaches are

not suitable for Apache Spark platform due to its different

programming model and features such as in-memory data

operations. Hence, to address this void, in this paper, we

focus on performance modeling for Apache Spark jobs.

While various forms of machine learning approaches are

often used to predict system performance leveraging past

system execution data [8] [9] [10] and can achieve rea-

sonable prediction accuracy, it requires training dataset. In

contrast, modeling based approaches predict performance

through modeling system behavior [11] [12] [13], and often

can provide a better understanding regarding internal exe-

cution of a program and resulting performance. Therefore,

in this paper, we apply analytical approaches to predict the

performance of Apache Spark jobs. Specifically, we leverage

the multi-stage execution structure of Apache Spark jobs

to develop hierarchical models that can effectively capture

the execution behavior of different execution stages. Using

these models, we first measure the job performance based on

limited scale execution using only a fraction of real data set.

Next, we predict the job performance based on the limited

scale execution job performance data. We evaluated our

framework with four real-world applications. In each case,

our model is able to predict execution time for individual

stage with high accuracy. Additionally, the model is able to

predict memory requirement for RDD creation with high

accuracy. However, the accuracy of I/O cost prediction

varied for different applications and simulation setup. We

discuss our detailed findings in Section IV.

The rest of the paper is organized as follows. Prior efforts

that are related to our work is discussed in Section II.

Section III explains the models that are used to predict job

performance in this work. Experimental results are presented

in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

While significant volume of work exists that looked into

various aspects of performance prediction in various dis-

tributed settings, in this paper, we focus our discussion on

recent efforts that investigated the challenge of performance

prediction for various cloud platforms [3]–[5], [9]–[15].

Among numerous efforts, PREDIcT [9] is one of the recent

work that looked into the problem of predicting runtime

for network intensive iterative algorithms implemented on

Hadoop MapReduce platform. Specifically, it aims to predict

the number of iterations and runtime for each iteration

based on sample run and historical data. However, PREDIcT

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE

DOI 10.1109/HPCC-CSS-ICESS.2015.246

166

focuses on iterative algorithms, and requires representative

training dataset to achieve high prediction accuracy, and may

lead to poor prediction accuracy for applications with no

historical data. To simplify the performance prediction for

complex Hadoop application, another recent work presented

the idea of using a modeling language (e.g., Hive Query

Language (HQL)) [12] that translates big data applications

into SQL-like queries on Apache Hive [16]. This provides a

convenient way for predicting performance for data process-

ing applications that can be implemented using HQL queries.

For Map Reduce jobs running on heterogeneous machines,

bound-based performance modeling techniques are tried for

predicting job completion time [13] as well. The main idea

is to evaluate the upper and lower bounds of job completion

time, and use that to predict job performance. Starfish [11]

presents a self-tuning framework for MapReduce paradigm

to predict job performance under different program con-

figurations for Apache Hadoop jobs. It applies analytical

approach to estimate how a job will perform based on job

simulation data, and uses that model to predict performance.

While this and prior approaches achieve good prediction

accuracy, due to the differences between the implementation

of other cloud platforms and Apache Spark platform, Starfish

and similar approaches are not suitable for predicting job

performance running on Apache Spark platform without

significant modifications. We address this void in our paper

as follows.

III. OVERVIEW

In Apache Spark platform, each job consists of multiple

execution stages implementing distinct operations of an ap-

plication program where stages are executed sequentially. To

facilitate parallel processing, input data set is partitioned into

multiple sets and are distributed over multiple worker nodes.

Within each worker node, batches of tasks are launched to

process the corresponding partition of the input data. The

number of tasks within each node is determined based on

the size of the input data and configuration settings of the

program. To illustrate the main idea behind Apache Spark

job execution, let us consider the Apache Spark PageRank

job running on two worker nodes: A and B, where Node A

has 8 CPU cores and Node B has 12 CPU cores as shown

in Figure 1. This PageRank job will have 13 stages if the

iteration number is set to 10, where stage 1 and stage 2

execute the distinct() operation. In the iteration part from

stage 3 to stage 12, the operation reduceByKey() is executed.

The final stage performs the saveAsTextFile() operation. As

shown in Figure 1, each box in the Figure represents one

stage, and each line in the box represents one task. Different

colors are used to differentiate tasks running on different

worker nodes. If the input data size of this PageRank job is

2.5 GB, the total number of input blocks will be 40 for

a default block size of 64 MB. As the number of tasks

is same as the input block number, there are 40 lines in

Figure 1: Apache Spark PageRank Job

each stage. In addition, the number of tasks in each stage

is same within one Spark job. Therefore, for this example,

in each stage, 40 tasks will be executed. However, different

CPU core may complete different number of tasks due to

the difference in computing ability and uncertainty during

the program execution. Given the above model of execution,

next, we present the developed hierarchical models that can

be used to predict job execution time, memory footprint for

RDD creation, and I/O overhead as follows.

A. Model for Estimating Execution Time

As a Spark job is executed in multiple stages where each

stage contains multiple tasks, we use the following notation

to represent an Apache Spark job:

Job = {Stagei | 0 ≤ i ≤ M} (1a)

Stagei = {Taski,j | 0 ≤ j ≤ N} (1b)

Here M is the number of stages in a job and N is the number

of tasks in a stage. Next, as different stages within a job are

executed sequentially, we represent the execution time of a

job as the sum of the execution time of each stage plus the

job startup time and the job cleanup time as follows:

JobT ime = Startup+

M∑
s=1

StageT imes + Cleanup(2)

Next, within each stage, as one CPU core executes one task

at a time, in a cluster with H worker nodes, the number of

tasks P that can run in parallel can be calculated as follows:

P =

H∑
i=1

CoreNumi (3)

Here, CoreNumi is the number of CPU cores of working

node i and H is the number of working nodes in the

cluster. Hence, within an execution stage, tasks in each stage

are executed in batches where each batch consists of P
tasks running in parallel. However, due to the differences

167

in computing capabilities among different worker nodes in

a heterogeneous cluster and inherent uncertainty in program

execution, the execution time of different tasks may vary

significantly. Therefore, the time spent in a particular stage

can be calculated as the maximum of the sum of all the

sequential tasks’ time within a stage plus the stage startup

time and the stage cleanup time as follows:

StageT ime = Startup+
P

max
c=1

Kc∑
i=1

TaskT imec,i

+Cleanup (4)

Here P is the number of total CPU cores, and Kc is the

number of sequential tasks executed on CPU core c. Finally,

as different tasks in a stage follow the same execution

pattern, the execution time of a task can be computed as

follows:

TaskT ime = DeserializationT ime+RunTime

+SerializationT ime (5)

Here DeserializationT ime is the time taken to deserial-

ize the input data, SerializationT ime is the time taken

to serialize the result, and RunTime is the actual time

spent performing operations on data such as data mapping,

filtering, calculating, and analyzing.

B. Memory Consumption

As the Spark platform takes the advantage of in-memory

processing to improve the computing efficiency, it is impor-

tant to allocate sufficient memory needed to create initial

RDD to avoid possible slowdown of the execution. More-

over, under certain system configurations, lack of enough

memory for initial RDD creation can lead to unexpected

program termination. To avoid such adverse events, we

develop a simple model to estimate the minimum memory

requirement for RDD creation. Specifically, if there are

N tasks in the system, we can express the total memory

requirement for the job as follows:

JobRddMem =

N∑
i=1

TaskRddMemi (6)

C. Model for Estimating I/O Cost

Finally, within a stage, the transformation operation that

generates new RDD based on previous RDD is implemented

in ShuffleMapTask and the action operation that output

the result data which is implemented in ResultTask. The

I/O cost during the shuffle phase in these two types of tasks

can be classified into two categories, namely, the shuffle read

cost and the shuffle write cost. Shuffle write cost is the cost

of writing the interim data to local disk buffer, and shuffle

read cost refers to the network I/O cost for fetching the

interim data from other worker nodes. As shuffle phase is the

most I/O intensive phase where frequent data fetching and

transmission occurs, in our model, for I/O cost measurement,

we specifically focus on data transmission during the shuffle

phase that involves data fetching from remote hosts and the

interim data writing into the disk. The stage-by-stage I/O

cost is calculated as follows:

StageIOWritei =

N∑
j=1

TaskIOWritei,j (7a)

StageIOReadi =

N∑
j=1

TaskIOReadi,j (7b)

Here N is the number of tasks in Stagei.

D. Performance Prediction

Based on the above model, to predict job performance, the

presented modeling framework first executes the program

on a cluster using limited amount of sample input data and

collect performance metrics such as run time, I/O cost, and

memory cost during the simulated run. Next, the extracted

performance metric from simulated run is used to predict

the performance metric for the actual run. Specifically, to

predict the execution time, we first calculate the number

of tasks that will be executed in the actual job as follows:

N = InputSize/BlockSize, where InputSize is the size

of the input data, and Blocksize is the size of one data

block in HDFS. The tasks within a stage are scheduled to

run batch by batch, and the number of tasks in each batch

P is computed as shown in equation (3). In one batch of

tasks, while the tasks may start simultaneously, they may

not finish at the same time due to various factors such as

data skew problem, and differences in computing capability

of different worker nodes. Hence, using simulation data, we

calculate the average execution time for a task for a given

stage for a worker node h as follows.

TaskRunTimeh,i = DeserializeT imeh,i

+RunTimeh,i

+SerializationT imeh,i (8)

AvgTaskT imeh =
1

nh

nh∑
i=1

TaskRunTimeh,i (9)

Here nh is the number of tasks running in host h in a

particular stage of the sample job. Moreover, during our

experiment, we observed that the average execution time

of the first batch is significantly different compared to the

subsequent batches within the same stage, which we capture

as follows.

Ratioh =
1

nh−Ph

∑nh

i=Ph+1 TaskT imeh,i
1
Ph

∑Ph

j=1 TaskT imeh,j
(10)

Here nh is the number of tasks running in host h, and Ph

is the number of tasks in the first batch. Please note that, to

trace two batches of tasks to calculate this ratio for every

168

working node, SampleSize needs to be doubled (discussed

in Section III-E). As tasks execute on different hosts in

parallel, to predict the execution time for a particular stage

during actual execution, stage Startup time and Cleanup
time are viewed as constants which are extracted from

simulation logs, and stage execution time is estimated as

follows:

EstStageT ime = Startup+
P

max
c=1

Kc∑
i=1

AvgTaskT imec,i

+Cleanup (11)

EstTaskT imec,i =

{
AvgTaskT imec, i = 1

AvgLaterTaskT imec, i > 1
(12)

Here P is the number of total CPU cores calculated in

equation (3), Kc is the number of sequential tasks running in

CPU core c. AvgTaskT imec is the average time for tasks in

the first batch for CPU core c of the corresponding host, and

is calculated in equation (9). AvgLaterTaskT imec is the

average time of the following batches of tasks, which could

be calculated as Ratioh ×AvgTaskT imeh. For predicting

I/O cost, the average shuffle read and write costs of a typical

task is computed and then used to compute the I/O cost for

a specific stage j as follows:

EstStageIOWritej

=

H∑
h=1

(Nh × 1

nh

nh∑
i=1

(TaskIOWriteh,i)) (13)

EstStageIOReadj

=

H∑
h=1

(Nh × 1

nh

nh∑
i=1

(TaskIOReadh,i)) (14)

Here H is the number of worker nodes and Nh is the number

of total tasks on host h during real execution. nh is the

number of tasks running on host h during simulation at stage

j. Finally, the average memory footprint for each stage is

estimated as follows:

EstRddMem =

H∑
h=1

(
Nh

nh

nh∑
i=1

TaskRddMemh,i) (15)

E. Simulation Methodology

For simulation, we tried two alternative setup as follows.

In the first setup, to make sure that all worker nodes in

the cluster is used during simulation, we extract sufficient

amount of sample input data so that each CPU core gets to

process at least one block of input data. Hence, given that

one block of HDFS data is configured to be equal to the

size BlockSize, the minimum value of SampleSize can

be calculated as BlockSize×P , where P is the number of

tasks that can run in parallel (P is calculated in equation (3)).

However, as the prediction mechanism needs to extract 2×P
blocks of sample data from the original input to simulate on

Figure 2: Simulation Setup

the whole cluster, for clusters with a large number of worker

nodes, total CPU core number P may be very huge, resulting

in a big sample job and long simulation time. In order

to reduce the simulation time, we tried another alternative

where the sample job is executed in a smaller cluster which

has fewer number of CPU cores p. As a result, only 2 × p
blocks of sample data is needed. In our simulation, we ran

simulation on a smaller cluster that includes one node of

each type (as shown in Figure 2(b)). Basically, all computing

nodes in a cluster can be classified into D groups, where

each group has Numg computing nodes and each computing

node in a group has the same computing capability (e.g.,

CPU speed, RAM). Next, one node is selected from each

group, and total D working nodes are chosen to construct

this new cluster. In such a setting, the size of sample data

is reduced to D/
∑D

g=1 Numg times of the original input

data, reducing the simulation time significantly. Finally, to

reduce the impact due to data skew, our sampling technique

divides the input data into multiple sections, and extracts

data from each section with equal probability.

IV. EXPERIMENTAL EVALUATION

To evaluate our model, experiments are performed on a

cluster of 13 nodes, where one node serves as the master

node, and the other 12 nodes serve as worker nodes. The

master node has 4 CPU cores, and 6 GB of memory. Among

the 12 worker nodes, 6 nodes have the same configuration:

8 CPU cores and 8 GB of memory, and the other 6 nodes

have the same configuration: 12 CPU cores and 16 GB of

memory. For evaluation, we ran Apache Spark using its

standalone cluster mode on top of Hadoop Distributed File

System (HDFS) with default 64 MB block setting. For data

collection, we leveraged spark event logs that are generated

by the Apache Spark platform to record execution profiles

and performance metrics that are directly obtained from the

Spark event listeners in the Apache Spark program, and

are saved in JSON [17] format. By analyzing this log file,

StageT ime in equation (2) and TaskT ime in equation

(4) can be easily calculated. Job Startup time and job

Cleanup time, and stage Startup time and stage Cleanup

169

time is calculated from log data as well. From task level log,

task time is calculated using equation (5). Moreover, since

I/O cost details are provided for each task, TaskIOWrite
and TaskIORead is calculated using the shuffle write and

read metrics to construct the I/O profile. The initial RDD

is created in one of the first few stages, and each RDD

block is stored in memory while the corresponding memory

usage is recorded in the tasks sections of logs. Based on

this information, memory consumption profile is calculated

using equation (6). Example applications we use to verify

performance of our prediction mechanism include one non-

iterative text processing algorithm: WordCount; two iterative

machine learning algorithms: Logistic Regression and K-

Means clustering; and one graph algorithm: PageRank. As

input data, the WordCount application uses 75 GB Wikipedia

dump. Logistic Regression and K-Means application use

50 GB of numerical Color-Magnitude Diagram data of

galaxy from Sloan Digital Sky Survey (SDSS) [18]. For

PageRank, we use the LiveJournal network dataset from

SNAP [19], which is processed through mapping each node

id into longer string to form 25 GB of data as the input

for this algorithm. To measure the effect of simulation setup

on prediction accuracy, we used two simulation setup as

follows. In the first simulation setup, we used the whole

cluster to simulate the execution. In this case, the number

of CPU core P is 120 and we have two cases to consider.

In the first case, the sample data size is set at 7.5 GB for P
cores (based on 64 MB of block size) to simulate one task

per core during the simulation. In this case, we assume that

each task within a stage requires similar execution time. In

the second case, the sample data size is set at 15 GB for

P cores (2× P based on 64 MB of block size) to simulate

two tasks per core during the simulation. Simulating two

tasks per core allows us to calculate the ratio based on the

discrepancy in execution time for the first task compared to

the subsequent tasks within a single stage (10). In the second

simulation setup, we used two worker nodes of different

computing capability from 12 worker nodes and kept the

master node to construct a cluster of 3 nodes (as shown in

Figure 2). In this case, the number of CPU core p is 20 and

we again have two cases to consider. In the first case, the

sample data size is set at 1.25 GB for p cores (based on 64

MB of block size) to simulate one task per core during the

simulation. In this case, we assume that each task within

a stage requires similar execution time. In the second case,

the sample data size is set at 2.5 GB for p cores (2 × p
based on 64 MB of block size) to simulate two tasks per

core during the simulation. Simulating two tasks per core

allows us to calculate the ratio based on the discrepancy in

execution time for the first task compared to the subsequent

tasks within a single stage (equation 10).

To evaluate the accuracy of our prediction model, we cal-

culate the prediction accuracy for each stage and sum them

Figure 3: Prediction Accuracy for WordCount

as the total accuracy R as follows:

R = |1−
M∑
i=1

|PredictCosti − Costi|∑M
j=1 Costj

| (16)

Here M is the number of stages for a particular job,

PredictCosti is the predicted performance cost for stage

i, and Costi is the actual cost. Equation (16) can be

used to calculate the prediction accuracy, and M is set to

1 when computing memory cost prediction accuracy. Our

experimental result is presented below.

A. WordCount

In the WordCount example, input data size is 75 GB.

For WordCount application, there are two stages and no

memory cost for the initial RDD creation. There is only

I/O write cost in the first stage, and I/O read cost for the

second stage. Figure 3 shows the accuracy for time and

I/O cost prediction for different simulation setup. As can

be seen in the figure, full cluster simulation achieves greater

prediction accuracy. Also, as can be seen in Figure 3 and

Figure 4, simulating two tasks per core and considering the

discrepancy in execution time for the first task compared

to the subsequent tasks within a single stage (equation 10)

improves the prediction accuracy significantly. For I/O cost

prediction, the full scale simulation achieves much better

prediction accuracy compared to the limited-scale simulation

(Figure 5 and Figure 6). This may be due to the fact that

the limited-scale simulation does not capture the frequent

network I/O that may happen in a large-scale setup.

B. Logistic Regression

Logistic Regression is an iterative algorithm with 10 stages,

where there is no shuffle I/O cost. For Logistic Regression,

the input data size is 50 GB. Figure 7 shows the prediction

accuracy for execution time and memory usage for the whole

job whereas Figure 8 shows the actual and predicted execu-

tion time per stage. As logistic regression is a computing-

intensive job, this minimizes the effect of I/O and leads to

better prediction accuracy. For memory cost prediction, all

170

Figure 4: Time Prediction for WordCount

Figure 5: I/O Write Prediction for WordCount

Figure 6: I/O Read Prediction for WordCount

four simulation setup achieved 100% accuracy and correctly

predicted the value of 11.5 GB needed to create the initial

RDD (Figure 7).

C. K-Means

We use the same data set as input for K-Means clustering

algorithm that was used for testing Logistic Regression algo-

rithm. K-Means is an iterative algorithm with 22 stages. In

the third stage of the job, the I/O cost involves shuffle write,

and the I/O cost involves shuffle read in the fourth stage.

Later stages follow the same pattern. Figure 9 shows the

prediction accuracy for execution time, memory usage, and

Figure 7: Prediction Accuracy for Logistic Regression

Figure 8: Time Prediction for Logistic Regression

Figure 9: Prediction Accuracy for K-Means

I/O cost. Figure 10 shows the actual execution time along

with predicted value for different stages. As the volume

of data read and written was small (only few megabytes),

the prediction error for I/O cost was high (Figure 11 and

Figure 12). However, as the time cost for I/O operations is

small and has minimal effect on total execution time, the

model still achieved high prediction accuracy for execution

time. For memory cost prediction, the model had 100%

accuracy, correctly predicting the value of 11 GB (Figure 9).

171

Figure 10: Time Prediction for K-Means

Figure 11: I/O Write Prediction for K-Means

Figure 12: I/O Read Prediction for K-Means

D. PageRank

PageRank is an iterative algorithm with 13 stages where

there are I/O read and write costs for each stage. In our

evaluation, we used 25 GB of input data. Figure 13 shows

the prediction accuracy. For time prediction, the accuracy is

above 80% for simulating one task per core, but drops to

around 70% for simulating two tasks per core (Figure 13

and Figure 14). This result may be due to the fluctuation

in execution time across tasks within a stage. For I/O write

cost prediction, the accuracy is above 90% for large-scale

simulation (Figure 13 and Figure 15). For memory cost

Figure 13: Prediction Accuracy for PageRank

Figure 14: Time Prediction for PageRank

Figure 15: I/O Write Prediction for PageRank

prediction, the accuracy is close to 97% for large-scale

simulation (Figure 13). However, the I/O read prediction

is below 50% based on small scale simulation (Figure 13

and Figure 16), which may be due to the inability to

capture network activity in sufficient details in a small scale

simulation.

V. CONCLUSION

This paper presents a performance prediction framework

for jobs running on Apache Spark platform. We establish

models for predicting job performance by simulating the

execution of actual job in a limited scale on real cluster.

172

Figure 16: I/O Read Prediction for PageRank

The prediction accuracy is evaluated for iterative and non-

iterative algorithms. While the prediction accuracy is found

to be high for execution time and memory, the I/O cost

prediction varied for different applications. We strongly

believe that our proposed approach can be used to predict

job execution time with high-accuracy in real-life and will

lead towards better resource allocation framework.

ACKNOWLEDGMENT

This work is supported by the AFOSR under Grant No.

FA 9550-15-1-0184. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

funding agency.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster computing with working sets,” in
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, 2010.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 2–2.

[3] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of
resource provisioning cost in cloud computing,” Services
Computing, IEEE Transactions on, vol. 5, no. 2, pp. 164–
177, 2012.

[4] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta:
Cloud scale load balancing,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp.
207–218.

[5] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and
D. Rajan, “Prepare: Predictive performance anomaly preven-
tion for virtualized cloud systems,” in Distributed Computing
Systems (ICDCS), 2012 IEEE 32nd International Conference
on. IEEE, 2012, pp. 285–294.

[6] Apache hadoop. [Online]. Available: https://hadoop.apache.
org/

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[8] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson,
“Statistics-driven workload modeling for the cloud,” in Data
Engineering Workshops (ICDEW). IEEE, 2010, pp. 87–92.

[9] A. D. Popescu, A. Balmin, V. Ercegovac, and A. Ailamaki,
“Predict: towards predicting the runtime of large scale itera-
tive analytics,” Proceedings of the VLDB Endowment, vol. 6,
no. 14, pp. 1678–1689, 2013.

[10] B. Mozafari, C. Curino, A. Jindal, and S. Madden, “Per-
formance and resource modeling in highly-concurrent oltp
workloads,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM,
2013, pp. 301–312.

[11] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu, “Starfish: A self-tuning system for big
data analytics.” in CIDR, vol. 11, 2011, pp. 261–272.

[12] E. Barbierato, M. Gribaudo, and M. Iacono, “Perfor-
mance evaluation of nosql big-data applications using multi-
formalism models,” Future Generation Computer Systems,
vol. 37, pp. 345–353, 2014.

[13] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance
modeling of mapreduce jobs in heterogeneous cloud environ-
ments,” in Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing. IEEE Computer Society,
2013, pp. 839–846.

[14] B. Mozafari, C. Curino, and S. Madden, “Dbseer: Resource
and performance prediction for building a next generation
database cloud.” in CIDR, 2013.

[15] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing
performance prediction robustness by combining analytical
modeling and machine learning,” in Proceedings of the In-
ternational Conference on Performance Engineering (ICPE).
ACM, 2015.

[16] Apache hive. [Online]. Available: https://hive.apache.org/

[17] Json. [Online]. Available: http://json.org/

[18] Sloan digital sky survey. [Online]. Available: http://www.
sdss.org/

[19] Stanford snap. [Online]. Available: http://snap.stanford.edu/

173

