
A Model Driven Approach towards Improving the
Performance of Apache Spark Applications

Kewen Wang, Mohammad Maifi Hasan Khan, Nhan Nguyen and Swapna Gokhale
Department of Computer Science and Engineering

University of Connecticut
kewen.wang@uconn.edu, maifi.khan@uconn.edu,nhan.q.nguyen@uconn.edu,ssg@engr.uconn.edu

Abstract—Apache Spark applications often execute in multiple
stages where each stage consists of multiple tasks running in
parallel. However, prior efforts noted that the execution time
of different tasks within a stage can vary significantly for
various reasons (e.g., inefficient partition of input data), and
tasks can be distributed unevenly across worker nodes for
different reasons (e.g., data co-locality). While these problems
are well-known, it is nontrivial to predict and address them
effectively. In this paper we present an analytical model driven
approach that can predict the possibility of such problems by
executing an application with a limited amount of input data
and recommend ways to address the identified problems by
repartitioning input data (in case of task straggler problem)
and/or changing the locality configuration setting (in case of
skewed task distribution problem). The novelty of our approach
lies in automatically predicting the potential problems a priori
based on limited execution data and recommending the locality
setting and partition number. Our experimental result using 9
Apache Spark applications on two different clusters shows that
our model driven approach can predict these problems with high
accuracy and improve the performance by up to 71%.

Index Terms—Apache Spark; Task Imbalance; Straggler; Per-
formance Modeling; Performance Optimization; Task Distribu-
tion; Configuration Tuning;

I. INTRODUCTION

Apache Spark is a recently popularized data analytic

platform that is being adopted by numerous organizations

(e.g.,Yahoo!, eBay, Baidu, Netflix [1]) due to its in-memory

computation framework and superior performance [2].
On this platform, each application is executed in multiple

stages where each stage can execute multiple tasks in parallel.

While this model helps to speed up the execution significantly,

this is shown to lead to two different problems as follows [3]–

[11]. First, among the tasks within a stage, occasionally some

tasks may take much longer (i.e., task stragglers) than the

median task time due to suboptimal partition of input data and

can increase the job completion time significantly. Second, as

Apache Spark tries to assign computing tasks closer to its input

data to reduce execution time, this can lead to skewed task

distribution across worker nodes, resulting in wasted resources

and increase in job completion time. While Apache Spark

provides locality setting (i.e., spark.locality.wait) to control the

process of task creation on remote worker nodes to address

possible skewed task distribution problem, it is nontrivial to

tune this setting.
Prior efforts attempted various approaches such as redesign-

ing task scheduler [6], [8], [9] and designing locality manager

to address these problems [7]. However, as each application is

different and even the same application can perform differently

based on input data characteristics, it is extremely difficult to

have a generalized algorithm that works for each application.

Furthermore, while intelligent job scheduling may solve the

task straggler problem caused by inefficient scheduling, it may

not mitigate the task straggler problem caused by data skew

or other reasons.

To address this problem, in this paper we take a model

driven approach where a given application is first run with

a fraction of the input data set to predict possible stragglers

and/or skewed task distribution problem in advance. Subse-

quently, if the model predicts the possibility of task straggler

problem, we use our performance models to repartition the

input data (or intermediate data if needed) by adjusting the

partition number to either split a longer task (i.e., straggler)

into multiple shorter tasks, or merge multiple tiny tasks into

a larger one. On the other hand, if the model predicts the

possibility of skewed task distribution problem, we tune the

locality setting (i.e., spark.locality.wait) that controls the task

creation on remote worker nodes to address possible skewed

task distribution problem (details are explained in Section III).

Our experimental results using 9 Apache Spark applications

on two different clusters show that our model driven approach

can mitigate the predicted imbalance problem and improve

performance significantly.

II. RELATED WORK

Prior effort exists that looked into various aspects of cloud

platform performance troubleshooting and tuning such as ad-

dressing task straggler problem, load balancing, and resource

allocation [6]–[9], [11]–[22]. Among these, Sparrow [6] is

implemented on top of Spark that aims to balance task load

across nodes through sub-second task scheduling. Sparrow’s

performance is evaluated using TPC-H query benchmark, and

is shown to reduce the median query response time by 4-

8X. Stark [7] in contrast presents a locality manager that

enforces data co-locality to reduce shuffle cost, and uses group

manager to dynamically change partition number to balance

task execution time. This tool is shown to reduce job execution

time by 4X compared to Spark (version 1.3.1) in case of log

mining jobs. Ernest [22] focuses on predicting run time for a

target hardware configuration (e.g., number of nodes), and uses

sampling and training method to build application performance

233

2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-7281-0746-2/19/$31.00 ©2019 IEEE
DOI 10.1109/ISPASS.2019.00036

models. However, it is not designed to identify the underlying

root cause (e.g., improper locality setting, suboptimal partition

of data) or address them by manipulating software configura-

tion. Rather, it attempts to address the problem by allocating

additional hardware resources.
Researchers have looked into job scheduling and resource

allocation for other platforms such as Hadoop [23] as

well [12]–[17], [21], [24], [25]. Among these, Wrangler [12]

changes the fair scheduler of Hadoop, and schedules tasks

based on the prediction of whether an incoming task will be a

straggler or not. It is shown to improve job completion time by

61% and 43% at 99% percentile for two types of real world

workloads. Dolly [13] on the other hand tries to eliminate

task straggler problem through full cloning of small jobs (�10

tasks), and uses delayed assignment to avoid the contention.
There are other approaches that focus on efficient load

balancing techniques [14], [21], [24] in order to improve

performance. For instance, Libra [14] uses sampling methods

to collect partial map task information to estimate the distri-

bution of intermediate data, and uses range partition to evenly

partition data. It is shown to achieve up to 4X improvement

in terms of job execution time.
While many of these prior efforts focus on addressing task

straggler problem, in contrast to prior efforts, we focus on

developing analytical models for predicting the possibility of

task straggler and skewed task distribution problem. As such,

our work is complementary to prior approaches, and helps

users to understand the underlying reasons behind suboptimal

performance problem and address them by modifying a target

application with minimal effort.

III. OVERVIEW

Apache Spark applications are executed in multiple stages

where each stage contains multiple tasks running on multiple

worker nodes in parallel. As the later stages of an application

often cannot start until all the tasks of the previous stage

are finished, stragglers within a stage can heavily impact

the subsequent stages and the overall application completion

time. Furthermore, if tasks are assigned to different nodes

disproportionately, nodes running more tasks may need longer

time to complete compared to nodes running fewer tasks,

negatively affecting the application completion time.
Instead of trying to detect and address such problems during

runtime, we try to predict these two categories of problems

(i.e., task straggler and skewed task distribution) a priori by

running the target application with only a fraction of the

input data as shown in Figure 1. Subsequently, based on the

performance model, we identify the stage(s) where data may

need to be repartitioned by modifying the corresponding part

of the source code (in case of stragglers) and/or change the

configuration setting to improve task distribution (in case of

skewed task distribution) to address the problems. The details

are below.

A. Performance Model for Apache Spark Application
Given the multistage execution model where different stages

within an application may be executed either sequentially or

Fig. 1: Workflow of the Presented Approach

in parallel (if possible), we represent the execution time of an

application as the sum of the execution time of the stages plus

the application startup time and cleanup time as follows.

AppT ime = Startup+ StagesT ime+ Cleanup (1)

StagesT ime =
∑Ns

i=1

Ni
max
j=1

StageT imei,j (2)

Here, Ns is the number of sequential segments of stages,

and Ni is the number of parallel stages within each segment

of stages. Note that the number of tasks in each Stagei may

not be equal as some stages may run in parallel. For example,

if two stages run in parallel, the following stage will contain

twice as many tasks as the number of tasks in the previous

stage.

In a cluster of H worker nodes, the number of total CPU

cores P can be calculated as follows.

P =
∑H

i=1
Corei (3)

Here, Corei is the number of CPU cores of worker node

i. As one CPU core executes one task at a time, P is the

maximum number of tasks that can be run in parallel. Hence,

within an execution stage, tasks in each stage are executed

in batches where each batch consists of P tasks running

in parallel. Therefore, the execution time of a stage can be

calculated as the maximum of the sum of all the sequential

tasks’ time within a stage plus the stage startup time and the

cleanup time as follows.

StageT ime = Startup+
H

max
h=1

Coreh
max
c=1

Nc∑
i=1

TaskT imec,i

+Cleanup (4)

Here Coreh is the number of CPU cores in host h and Nc is

the number of tasks executed on CPU core c.
As different tasks in a stage follow the same execution pattern,

the execution time of a task can be computed as follows.

TaskT imei = SchedulerDelayi +DeserializationT imei

+RunTimei + SerializationT imei (5)

Here SchedulerDelayi is the task scheduling delay,

DeserializationT imei is the time taken to deserialize a task

object, SerializationT imei is the time taken to serialize the

234

(intermediate) result, and RunTimei is the time spent in

performing operations such as data mapping, reduction, and

sorting.

B. Model based Prediction of Potential Imbalance Problems

The main idea behind our work is to execute an application

with a smaller input data set, which is sampled from the actual

target data set, and analyze the execution profile to predict

potential imbalance problems for the application.

1) Predicting the Problem of Task Straggler:
In an ideal case, for a given application, the execution time

T of each of the N tasks within a stage should be close to

each other. As such, within a stage, if a significant difference

exists among task execution time Ti(1 � i � N), it indicates

the possibility of stragglers. From our experiments, we noted

that the average execution time of the first wave of tasks is

different from the average execution time of the following

waves of tasks. To account for this phenomenon, we calculate

the median execution time Tm for the tasks in the first wave

and the following waves separately.

In this work we define a ratio RS as shown in equation (6),

where if RS � α as in equation (7) we decide that the task

straggler problem exists for this application.

RS =
N

max
i=1

Ti/Tm (6)

RS � α, α = 2 (7)

In this work we choose α = 2 to identify tasks that take

significantly longer to execute compared to other tasks. Note

that this value is determined empirically and based on prior

works [3], which can be changed to adjust the sensitivity of

the prediction algorithm.

2) Predicting the Problem of Skewed Task Distribution:
We identify two possible reasons that may cause skewed

task distribution problem as follows.

To identify skewed task distribution caused by improper

locality setting, first, we analyze the application execution logs

and identify the number of tasks Ni launched on each node

i(1 � i � H).
Next, we define a task distribution ratio RD as shown in

equation (8). If RD � 2 and the median execution time Tm �
2s, we predict that skewed task distribution problem exists for

this application as shown in equation (9). Intuitively, equation

(9) identifies whether a node has at least twice as many tasks

as other nodes (RD � 2) and Tm � 2s, implying a large

number of small tasks are scheduled on one node (due to

improper locality setting).

As the default waiting period for a task before it is scheduled

on a lower locality level node is 3s, we select 2s as the

threshold in our model, which was determined empirically.

Furthermore, as the total number of tasks in the simulated

execution might be smaller than the total number of CPU

cores in the cluster, it is possible that some working nodes

may have no task to run. For that, we only calculate RD for

working nodes that have at least one running task. If RD < 2
and the number of tasks � H , we predict the possibility of

potential skewed task distribution problem as in equation (10).

Here Nidle is the number of idle nodes that have no task to

run. Intuitively, this condition checks whether there are idle

cores while some node has multiple small tasks (Tm � 2s)

(due to improper locality setting).

RD =
H

max
i=1

Ni/
H
min
i=1

Ni (8)

RD � β and Tm � 2s, β = 2 (9)

Nidle > 0,
∑H

h=1
Nh � H,RD < 2, Tm � 2s (10)

In addition to the improper locality setting, we identify that

suboptimal partition number may lead to the creation of a

small number of tasks, leading to cluster underutilization and

skewed task distribution as well. For instance, in a cluster of

H working nodes, creating less than H tasks will lead to at

least one idle node, causing skewed task distribution as well.

This is identified using the following equation.∑H

h=1
Nh < H (11)

C. Addressing the Predicted Problem

Once we predict the problem (i.e., task straggler and/or

skewed task distribution problem) as explained in the previous

section, the next step is to address the problem as follows.

1) Addressing the Problem of Task Stragglers:
In Apache Spark the input data is evenly partitioned among

all the tasks in the first stage. However, this does not guarantee

that the key distribution will be even once the input data is

mapped onto key-value pairs and may have large variance,

causing tasks responsible for processing extra key-value pairs

taking longer to finish compared to tasks with fewer key-value

pairs. This often results in significant differences in the time

needed to perform the shuffling operation as the key-value

pairs sharing the same key range need to be fetched together

for subsequent processing.

Furthermore, during the execution of multiple stages, the

size of output data of an intermediate stage is likely to change,

causing the size of the input data for the following stages to

change as well. Such runtime variations may cause the data

partition used in the previous stage to become suboptimal for

the following stages. In the worst case, some partitions may

contain no data at all although one task will be assigned to

each such partition, causing skewed task time distribution.

As task stragglers often result from inappropriate partition-

ing of data, one way to solve this is by repartitioning data

that can divide the long tasks into multiple smaller tasks and

execute on multiple nodes. Repartitioning can also eliminate

the cost of creating a large number of tiny tasks. While

re-partitioning can be done using “repartition()” operation

on Apache Spark platform, however, this operation is I/O

intensive as it involves remote data shuffling. Instead, we

attempt to change the partition number for the stage where

the straggler is predicted.

To address this, we develop performance models to estimate

the execution time for a target application for a given partition

number and use this model to find out a possible partition

number that can reduce the application execution time and

235

eliminate possible task straggler problem. Note that, while the

suggested partition number by our algorithm is likely to im-

prove performance significantly, it may not be optimal which

will require testing all possible values and is computationally

infeasible.

We identify the stragglers using the following equation.

ImbTasks = {Taski | T imeTaski
� αTimem} (12)

Here, α = 2, 1 � i � N , and T imem is the median value of

the task execution time. As the average execution time of the

tasks in the first wave is significantly different compared to

the subsequent waves within the same stage, we calculate the

median value for task execution time in the first wave and the

following waves separately.

Once we change the partition number, the number of initial

tasks will be changed as well. We calculate the ratio γ as in

equation (13).
γ = Nt/N (13)

Here Nt is the number of estimated new tasks, and N is

the number of current tasks. When Nt becomes larger than N ,

then γ will be greater than 1 and the task execution time will

be shorter. Once the partition number is changed, the execution

time for each task is changed as well.

For non-straggler tasks, we use the average task time in

each host h to estimate the new average task time as follows.

EstAvgTaskT ime =

N−Nu∑
i=1

(RunTimei
γ +MTimei)

N −Nu
(14)

MTimei = TaskT imei −RunTimei (15)

Here N is the number of total tasks, and Nu is the number

of straggler tasks. RunTimei is the time spent performing

operations such as map, sort, reduce in Taski. MTimei
includes time spent on scheduling and/or serialization.

We estimate the task time for straggler tasks when the

partition number is changed as follows.

EstImbTaskT imek = RunTimek/γ + ImbTaskT imek

−RunTimek, 1 � k � Nu (16)

Here ImbTaskT imek refers to the straggler task execution

time before the partition number is changed.

Next, we estimate the new task time NewImbTaskT imei
for straggler tasks when the partition number is changed as

follows. When γ > 1, as there will be more straggler tasks,

we use the execution time of the original set of straggler tasks

to estimate the execution time of the new set of straggler tasks.

In contrast, when γ < 1, as there will be fewer straggler tasks,

we use the average time of the original set of straggler tasks

to estimate the new execution time.

NewImbTaskT imei =

⎧⎪⎨
⎪⎩
EstImbTaskT imei%Nu

, γ � 1
Nu∑
k=1

EstImbTaskT imek
Nu

, γ < 1

1 � i � �γ ×Nu� (17)

Next, we use the estimated task execution time to assign

non-straggler tasks and straggler tasks to available cores wave

by wave and calculate the execution time of the modified

stages and update the application time accordingly.
Using the above formulation, we use Algorithm 1 to search

for the partition number that may reduce the application

execution time the most. Briefly, the algorithm begins with

partition number P , and increases the partition number by P
in each iteration until it reaches the maximum possible value.

In each iteration, it estimates the application execution time

for the new partition number using Algorithm 2. At the end,

the algorithm outputs the partition number that is predicted to

achieve the shortest execution time. As we use our model to

predict the execution time in each iteration, the runtime of the

algorithm is less than 5s for all applications in our experiment,

and is less than 1s in most cases.

Input: SampleApp

Output: Recommended Partition Number bpn
1 Function PartitionNumSearch
2 Current PartitionNum cpn;

3 P =
∑H

i=1 Corei;
4 Initialize PartitionNum pn = P , δ = P ;

5 Initialize mpn = Max{16× cpn, 100× P};
6 Initialize RecAppT ime=MaxValue;

7 while pn � mpn do
8 ratio γ = pn

cpn ;

9 AppT ime = EstT ime(SampleApp, γ);
10 if AppT ime−RecAppT ime < −1s then
11 RecAppT ime = AppT ime;

12 bpn = pn;

13 end
14 pn+ = δ
15 end
16 end

Algorithm 1: PartitionNumber Search Algorithm

Input: SampleApp, γ
Output: Estimated AppTime AppT ime

17 Function EstTime
18 Initialize startID = Stage.ID of the first stage;

19 for Stage ∈ SampleApp.Stages do
20 if Stage.ID < startID then
21 γ = 1;

22 end
23 Estimate non-straggler task time using eq (14);

24 Estimate straggler task time using eq (17);

25 Estimate stage time StageT ime;

26 if ∃ Parallel Stages then
27 AppT ime += maxSi=1 StageT imei; here S is

the number of parallel stages
28 else
29 AppT ime += StageT ime;

30 end
31 end
32 end

Algorithm 2: Algorithm for Application Time Estimation

236

TABLE I: Data Locality Level

Locality Level Meaning

PROCESS LOCAL On the same JVM

NODE LOCAL On the same node

NO PREF No locality preference

RACK LOCAL On the same rack of servers

ANY Not in the same rack

TABLE II: Locality Configuration
Configuration Default Value Meaning
spark.locality.wait 3s Wait time for node in

All locality levels
spark.locality.wait.process spark.locality.wait Wait time for node in

PROCESS LOCAL
spark.locality.wait.node spark.locality.wait Wait time for node in

NODE LOCAL
spark.locality.wait.rack spark.locality.wait Wait time for node in

RACK LOCAL

2) Addressing the Problem of Skewed Task Distribution:
To reduce execution time, Apache Spark tries to assign

computing tasks closer to its input data. Based on distance,

it has multiple locality levels as listed in Table I. The best

case scenario is when Apache Spark is able to schedule a

task on the same JVM where the input data for that task is

located. However, if the node where the input data is located is

overloaded, it is possible that a task may have to wait a long

time before it can be executed. To avoid such long waiting

time, Apache Spark provides a set of configuration parameters

(listed in Table II) that can be set to control the maximum

waiting period before a task is scheduled on a lower locality

level. For example, in case of the default setting, it will wait

3 seconds before it schedules a task on a remote node. As a

result, for small tasks with run time less than 3 seconds, a

large number of short tasks may be accumulated in one or a

small number of nodes while some nodes may remain idle.

To address the problem of skewed task distribution, we use

our analytical performance models to estimate the application

execution time considering tasks were assigned evenly across

nodes. If the estimated application execution time is less than

the original execution time, we update the locality configura-

tion setting.

In case of skewed task distribution due to cluster under-

utilization, we use Algorithm 1 described in Section III-C

to search for a partition number that will launch additional

tasks to effectively utilize the cluster. Based on the estimated

difference in execution time, the algorithm determines whether

to change the partition number or not.

D. Source Code Modification to Tune Locality Setting and
Partition Number

Once the algorithm identifies the recommended partition num-

ber and/or the locality setting, we need to modify the Spark

application source code to see the actual effect. Note that this

change is minimal and often involves only changing one to

two lines of code as follows.

To change the locality setting (which is referred to as

“Improvement 1” in the paper), we modify the application

source code by adding “.config(spark.locality.wait, 0)” to

TABLE III: Operations with Partition Parameters

Function Name Partition Parameters
Applications

partitioner numPartitions

aggregateByKey � �
coalesce �
combineByKey � �
distinct �
edgeListFile � TriangleCount

ConnectedComponents
groupByKey � � PageRank
intersection � �
join � �
logNormalGraph � SSSP
reduceByKey � �
repartition �
sortByKey �

change the waiting period before creating tasks on non-local

nodes to balance the task distribution.

To change the partition number (which is referred to as

“Improvement 2” in the paper), we first identify the applica-

tion stage(s) and the corresponding operations (e.g., reduce(),

distinct(), join()) associated with the task straggler problem

by analyzing the execution log. For example, if we identify

that task stragglers exist in the second stage, we change the

partition number for the operation that corresponds to the

second stage.

One way to change the number of partitions for the follow-

ing stages is by inserting operations such as “repartition(n)”

before the target stage. However, as using this operation

will add more stages and may increase the execution time,

instead, we change the partition number parameter of the

corresponding operation for that stage. As some operations al-

ready contain the partitioning parameter, we take advantage of

this feature to perform the repartitioning without adding extra

stage to the application. Among the Apache Spark operations

listed in Table III, some contain parameter that can directly

change the partition number such as “groupByKey.” Note

that Table III does not list all the functions that allow changing

the partition number. In addition to that, some functions of

Spark libraries also provide partition number parameter such

as function “edgeListF ile” used in the Spark graphx library.

We can use this feature to change the partition number for

graph processing applications that use Spark graphx library

(e.g., TriangleCount, ConnectedComponents).

In cases where no such function is used in the straggler

stage, we can change the partition number in an earlier stage,

which impacts the number of partitions for the subsequent

stages.

Finally, some applications use input functions to obtain the

input data. These input functions (listed in Table IV) can

either use parameter partition number to change the number

of partitions directly or use other parameters to determine the

minimum value for partition number (e.g., “textF ile”).

IV. EVALUATION

To evaluate the effectiveness of our approach, we used two

sets of clusters (Table V). ClusterI consists of 6 nodes where

one node was used as the master node and 5 nodes as worker

237

TABLE IV: Input Functions with Partition Parameters

Function Name Partition Parameters
Applications

numPartitions minPartitions

binaryFiles �
hadoopRDD �
makeRDD �
parallelize � PiEstimation
range �
sequenceFile �
textFile � TransitiveClosure

WordCount

TABLE V: Cluster Setting
Physical Configuration Cluster I Cluster II
Number of Nodes 6 4
Number of CPU cores per Node 8 20
Memory size per Node 22GB 16GB

TABLE VI: Apache Spark Applications
Application Imbalance Sample Input Input
TransitiveClosure � 1GB 10GB
TriangleCount � 2GB 50GB
PageRank � 2GB 50GB
ConnectedComponents � 2GB 50GB
SSSP � 10000 vertex 1000000 vertex
PiEstimation � 1000 slices 100000 slices
WordCount � 2GB 20GB
K-Means 2GB 20GB
LogisticRegression 2GB 20GB

nodes. In this cluster, each machine is configured with 8 CPU

cores and 22GB of RAM memory. ClusterII consists of

4 nodes where one node was used as the master node and

3 nodes as worker nodes. In this cluster, each machine is

configured with 20 CPU cores and 16GB of RAM memory.

We ran Apache Spark (version 2.1.0) on top of Apache

Hadoop Distributed File System (version 2.7.3), and used the

standalone mode for Apache Spark platform. The default block

size of Apache Hadoop Distributed File System (HDFS) is set

at 128MB which affects the number of partitions and task

number. We used the Apache Spark log files to analyze the

execution data for each application.

In order to evaluate the performance of our approach, we

used 9 different Apache Spark applications as listed in Ta-

ble VI. TriangleCount, PageRank, and ConnectedComponents

were tested using the LiveJournal network dataset downloaded

from SNAP [26]. The input data is pre-processed by mapping

each node id onto a longer string to form a 50GB dataset.

TransitiveClosure was tested using 10GB data sampled from

this 50GB data set as the system ran out of memory when

50GB input data was used. SSSP (SingleSourceShortestPath)

used generated graph with 1000000 vertices, while PiEsti-

mation used parallelized number collection of 100000 slices.

WordCount application was tested using 20GB Wikipedia

dump data. Lastly, K-Means and LogisticRegression were

tested using 20GB of numerical Color-Magnitude Diagram

data downloaded from Sloan Digital Sky Survey (SDSS) [27].

To predict the potential imbalance problems for these 9

applications, we first executed each application with sample

input data, which was randomly extracted from the complete

input data set, and then analyzed the execution profile for each

sample application to predict potential task straggler and/or

skewed task distribution problem based on equation (7), (9),

(10) and (11).
Note that the maximum size of sample input data was 2GB

for 50GB input size (4%). While we intended to test all

applications with 50GB input data, however, due to limited

scale of our cluster we experienced runtime errors for some

applications when executed with 50GB dataset (e.g, Transi-

tiveClosure). In such cases, we had to reduce the input size to

10GB, causing the sample to input data ratio to become 10%.

Table VI lists the size of sample dataset for all applications.

The block of sample dataset was selected from a randomly

selected position of the whole dataset.
We calculated the runtime overhead of our approach as a

percentage of total execution time before improvement. The

overheads (including sampling, profiling and searching for best

configuration) were 5%, 15%, 12%, 35%, 9%, 6%, and 16%

for TriangleCount, PageRank, ConnectedComponents, Word-

Count, TransitiveClosure, SSSP, and PiEstimation respectively.

As jobs on production systems are likely to run for much

longer (i.e., hours or days) compared to our limited scale

evaluation setup, we expect the relative overhead to be much

smaller in real deployment.
To evaluate the effect of addressing potential skewed task

distribution problem, we use equation (18) to calculate the

standard deviation for the number of tasks across all the

working nodes in the cluster as follows.

std =

√∑H

h=1
(Nh − N̄)2/(H − 1) (18)

Here Nh refers to the number of tasks on node h.
Table VII displays the prediction result of our algorithm.

“True Positive(TP)” indicates that the listed problem exists for

a given application and is correctly identified by our algorithm.

“False Negative(FN)” in this table indicates that the algorithm

incorrectly predicts that there will be no imbalance problem

although the problem exists.
Out of the 9 applications, 7 of them were correctly predicted

to have either task straggler and/or skewed task distribution

problem on ClusterI , while 6 of them were predicted to have

either task stragglers and/or skewed task distribution problem

on ClusterII . Note that due to the differences in CPU and

memory capability between these two clusters, the imbalance

problem disappeared or intensified in some cases depending on

the cluster. For instance, PiEstimation exhibited task straggler

problem on ClusterI where the ratio RS was larger than 20

whereas this ratio RS dropped to around 2 on ClusterII . As

such, evaluation on two different clusters was performed to

test the effectiveness of our approach.
Based on our evaluation, we classified these 9 applications

into three groups. The first group included applications that

were predicted to have both stragglers and skewed task distri-

bution problem. The second group included applications that

were predicted to have either task straggler problem or skewed

task distribution problem. Finally, the last group included

applications that were predicted to have no imbalance problem.
Table VIII and Table IX list the performance improvement

after addressing the predicted problems using our approach.

Here, column “Improvement 1” lists the performance im-

238

TABLE VII: Imbalance Prediction Result

Application Straggler Skewed Distribution
Cluster I Cluster II Cluster I Cluster II

TriangleCount TP TP TP TP
PageRank TP TP TP TP
ConnectedComponents TP TP TP FP
WordCount TP TP TP FP
TransitiveClosure TP TP FN FN
SSSP TN TN TP TP
PiEstimation TP FN TN TN
K-Means FN FN FN TN
LogisticRegression FN TN TN TN

provement for applications by tuning locality setting, column

“Improvement 2” lists the performance improvement for appli-

cations by tuning partition number, and column ”Improvement

1&2” lists the performance improvement for applications by

tuning locality setting and partition number. As ClusterII
had more CPU cores and few working nodes, the imbalance

problem was often less severe, causing the performance im-

provement to be lower on ClusterII in some cases. In ad-

dition, we list the performance with the speculative execution

feature enabled, which is a built-in approach for mitigating

the task straggler problem provided by the Apache Spark

platform. As can be seen in the table, compared to speculative

task execution, which negatively impacted performance in

some cases, our approach performed significantly better and

improved performance by up to 71%. Details are below.

A. Group I: Applications with both task straggler and skewed
task distribution problems

TriangleCount, PageRank, ConnectedComponents and

WordCount exhibited both task straggler and skewed task

distribution problems and were assigned to this group. To

address the skewed task distribution problem, we first changed

the locality configuration “spark.locality.wait” to 0 seconds

(Improvement 1). Next, to address the task straggler problem,

we attempted to find a better partition number (Improvement

2). We list the application execution time with enabling the

speculative task execution (Config Speculation) feature of

Apache Spark as well. Figure 2a and Figure 2b display the

performance improvement for Group I applications for each

cluster respectively. As TriangleCount ran out of memory

on ClusterII when 50GB input data was used, the input

data for TriangleCount was changed to 10GB, resulting in

much shorter execution time for TriangleCount on ClusterII
compared to ClusterI .

For TriangleCount application on ClusterI , we set the

partition number to 40 as suggested by our algorithm (the

default value was 400), which improved the performance by

63% compared to the default execution time (Table VIII).

Moreover, Figure 3a and Figure 4a show the values for RS
and std for task number in each stage of the application

before and after improvement. While RS was increased after

“Improvement 1”, it dropped to a lower level after both

improvement methods were applied. It may be due to the

fact that the purpose of “Improvement 1” is to balance the

task distribution and not to balance the task execution time.

“Improvement 2” can reduce RS compared to “Improvement

1.” Applying “Improvement 1&2” achieved better performance

for task distribution compared to “Improvement 1” alone as

shown in Figure 4a.

For PageRank application on ClusterI , it achieved 40%
improvement after we addressed the skewed task distribution

problem (Improvement 1). However, when we selected the

partition number suggested by our algorithm, the execution

time was not improved further. Enabling the speculative exe-

cution feature improved the performance of PageRank by 25%,

which was the highest among these four applications. Figure

3b and Figure 4b display RS and std for task number in

each stage of the application before and after improvement.

The reduction in std for task number after the improvement

can be seen in Figure 4b. However, RS was increased after

the improvement method was applied as the task straggler

problem mostly resulted due to the scheduling issue instead

of inappropriate partitioning.

For ConnectedComponents on ClusterI , addressing the

skewed task distribution problem improved the performance

by approximately 10%. It was then improved by about 32%
after using the suggested partition number. Compared to Tri-

angleCount, as ConnectedComponents application contained a

large number of short tasks (time < 1s), we had to reduce the

partition number. As can be seen in Table VIII, using partition

number 40 achieved 32% performance improvement compared

to using the default partition number 400. Figure 3c and Figure

4c show RS and std for task number in each stage of the

application before and after improvement.

For WordCount application on ClusterI , the performance

improvement was small (around 4%) as it had no significant

task imbalance problem originally. Also, our algorithm sug-

gested 160 as the partition number, which was the default

partition number for this application. Figure 3d and Figure

4d show RS and std for task number in each stage of

the application before and after improvement. The execution

time of the first 3 stages contributed significantly to the total

execution time, and the RS for these first 3 stages were small,

indicating that this application had no serious task straggler

problem, which explains why “Improvement 2” helped little

to improve the performance.

B. Group II: Applications with one imbalance problem

TransitiveClosure, SSSP and PiEstimation belonged to this

group. Figure 2c and Figure 2d show the performance im-

provement for Group II applications on each cluster. PiEsti-

mation is not included in Figure 2d as it was predicted to

have no imbalance problem when run on ClusterII . For

TransitiveClosure application, most of the tasks had execution

time longer than 3s. For SSSP, the partition number was always

2 under default setting, which led to skewed task distribution

problem. For PiEstimation, there were a large number of tasks

with execution time shorter than 200ms.

For TransitiveClosure application on ClusterI , by ana-

lyzing the sample execution log we found a task that took

30 times longer than the median task execution time in a

239

TABLE VIII: Performance Improvement on Cluster I

Application Abbrev. Config Speculation Improvement 1 Improvement 2 Improvement 1&2
(Tune Locality Setting) (Tune Partition Number)

TriangleCount TC 3% 39% 17% 63%
PageRank PR 25% 40% 19% 39%
ConnectedComponents CC 7% 10% 27% 32%
WordCount WC 3% 4% 0% 4%
TransitiveClosure TRC 16% - 56% -
SSSP SSSP 8% - 71% -
PiEstimation PI -22% - 14% -

TABLE IX: Performance Improvement on Cluster II

Application Abbrev. Config Speculation Improvement 1 Improvement 2 Improvement 1&2
(Tune Locality Setting) (Tune Partition Number)

TriangleCount TC 10% 9% 15% 15%
PageRank PR 3% 3% 0% 0%
ConnectedComponents CC 2% 0% 22% 23%
WordCount WC 2% 2% 0% 2%
TransitiveClosure TRC -30% - 56% -
SSSP SSSP 8% - 68% -

(a) GroupI on ClusterI (b) GroupI on ClusterII (c) GroupII on ClusterI (d) GroupII on ClusterII

Fig. 2: Performance Improvement for Apache Spark Applications

particular stage for the default partition number of 80 for 10GB

input data. From Table VIII, we can see that the performance

was improved by 56% after changing the partition number

to 240 as suggested by our algorithm. Figure 3e and Figure

4e show RS and std for task number in each stage of the

application before and after improvement. As can be seen,

RS was reduced after the improvement, especially in stage

3 where the longest task was launched. As such, mitigating

the straggler problem in stage 3 significantly improved the

application performance.

For SSSP (SingleSourceShortestPath) application on

ClusterI , it used a default value of 2 for partition number.

From Table VIII, we can see that using partition number 40

improved the performance by 71%. Figure 3f and Figure

4f show RS and std for task number in each stage of this

application before and after improvement. Improvement II

resulted in more tasks and increased the std for task number.

However, tasks were more evenly distributed across nodes,

thereby improving performance.

PiEstimation used the number of slices as the number of

partition number. When we used 1000 slices as input for

this application in our sample execution, it contained 1000

partitions. As a result, it contained a large number of tasks with

execution time shorter than 200ms. In contrast, when we used

100000 slices as input, our algorithm identified 7880 as the

recommended partition number, which outperformed 100000.

From Table VIII, we can see that using partition number 7880

achieved 14% performance improvement.
As PiEstimation had 1000 tasks in the sample execution,

RD was used to predict the skewed task distribution problem,

and no skewed task distribution problem was predicted. Figure

3g and Figure 4g show RS and std for task number in each

stage of this application before and after improvement. As

PiEstimation only had one stage, there is only single data

points in each figure. As can be seen, RS was significantly

reduced while decreasing std for task number.
Note that, as PiEstimation application used a large number

as partition number in default setting, enabling speculative

execution increased the scheduling cost for the application due

to a large number of tiny tasks (task execution time was very

short), and resulted in 22% performance reduction compared

to default setting.

C. Group III: Applications with no imbalance problem
K-Means and LogisticRegression belonged to this group.

Both of them had been predicted to have no imbalance

problem. For K-Means, Figure 3h and Figure 4h show RS and

std for task number in each stage of the sample application

and whole application. From the aspect of RS, the prediction

error was found to be small. From the aspect of std for task

number, the prediction was not accurate.
For LogisticRegression, Figure 3i and Figure 4i show RS

and std for task number in each stage of the sample application

240

(a) TC (b) PR (c) CC

(d) WC (e) TRC (f) SSSP

(g) PI (h) KM (i) LR

Fig. 3: Ratio of Task Straggler (RS)

and whole application. From the aspect of RS, this prediction

was not accurate, although the actual imbalance problem was

not significant. From the aspect of std for task number, the

prediction was correct.

V. CONCLUSION

This paper presents a model driven approach for predicting

and addressing possible task straggler and skewed task distri-

bution problem. Evaluation on two different clusters demon-

strates that the model can correctly predict such problems with

high accuracy, allowing the algorithm to suggest near-optimal

partition number and locality settings. Experimental result

demonstrates the effectiveness of our approach in improving

performance by up to 71% on Cluster I and up to 68% on

Cluster II. We believe that our approach will allow users to

tune their systems while revealing the root cause behind the

suboptimal performance problems.

ACKNOWLEDGMENT

This material is based upon work supported by the Air

Force Office of Scientific Research award number FA9550-15-

1-0164 under the DDDAS program. Any opinions, findings,

and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views

of the funding agency.

REFERENCES

[1] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: A unified engine for big data processing,” Communications of
the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

[3] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), 2015, pp. 293–307.

[4] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Straggler
root-cause and impact analysis for massive-scale virtualized cloud
datacenters,” IEEE Transactions on Services Computing, 2016.

[5] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, “Structured streaming: A declarative api for
real-time applications in apache spark,” in Proceedings of the 2018
International Conference on Management of Data. ACM, 2018, pp.
601–613.

[6] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM, 2013, pp.
69–84.

[7] S. Li, M. T. Amin, R. Ganti, M. Srivatsa, S. Hu, Y. Zhao, and
T. Abdelzaher, “Stark: Optimizing in-memory computing for dynamic
dataset collections,” in Distributed Computing Systems (ICDCS), 2017
IEEE 37th International Conference on. IEEE, 2017, pp. 103–114.

[8] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling tasks closer to data
across geo-distributed datacenters,” in Computer Communications, IEEE

241

(a) TC (b) PR (c) CC

(d) WC (e) TRC (f) SSSP

(g) PI (h) KM (i) LR

Fig. 4: Standard Deviation (std) for Task Number

INFOCOM 2016-The 35th Annual IEEE International Conference on.
IEEE, 2016, pp. 1–9.

[9] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das, “Phoenix: a constraint-aware scheduler for heterogeneous
datacenters,” in Distributed Computing Systems (ICDCS), 2017 IEEE
37th International Conference on. IEEE, 2017, pp. 977–987.

[10] K. Ousterhout, C. Canel, M. Wolffe, S. Ratnasamy, and S. Shenker,
“Performance clarity as a first-class design principle,” in Proceedings of
the 16th Workshop on Hot Topics in Operating Systems. ACM, 2017,
pp. 1–6.

[11] K. Wang, M. M. H. Khan, N. Nguyen, and S. Gokhale, “Design and
implementation of an analytical framework for interference aware job
scheduling on apache spark platform,” Cluster Computing, pp. 1–15,
2017.

[12] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz, “Wrangler: Pre-
dictable and faster jobs using fewer resources,” in Proceedings of the
ACM Symposium on Cloud Computing. ACM, 2014, pp. 1–14.

[13] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones.” in NSDI, vol. 13, 2013, pp.
185–198.

[14] Q. Chen, J. Yao, and Z. Xiao, “Libra: Lightweight data skew mitigation
in mapreduce,” IEEE Transactions on parallel and distributed systems,
vol. 26, no. 9, pp. 2520–2533, 2015.

[15] Z. Liu, Q. Zhang, R. Boutaba, Y. Liu, and B. Wang, “Optima: on-line
partitioning skew mitigation for mapreduce with resource adjustment,”
Journal of Network and Systems Management, vol. 24, no. 4, pp. 859–
883, 2016.

[16] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask scheduling in
mapreduce with data locality: Throughput and heavy-traffic optimality,”
IEEE/ACM Transactions on Networking, vol. 24, no. 1, pp. 190–203,
2016.

[17] X. Ma, X. Fan, J. Liu, H. Jiang, and K. Peng, “vlocality: Revisiting data

locality for mapreduce in virtualized clouds,” IEEE Network, vol. 31,
no. 1, pp. 28–35, 2017.

[18] T. Chiba and T. Onodera, “Workload characterization and optimization
of tpc-h queries on apache spark,” in Performance Analysis of Systems
and Software (ISPASS), 2016 IEEE International Symposium on. IEEE,
2016, pp. 112–121.

[19] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 153–167.

[20] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics.” in NSDI, vol. 2, 2017, pp. 4–2.

[21] Y. Le, J. Liu, F. Ergun, and D. Wang, “Online load balancing for
mapreduce with skewed data input,” in INFOCOM, 2014 Proceedings
IEEE. IEEE, 2014, pp. 2004–2012.

[22] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced ana-
lytics.” in NSDI, 2016, pp. 363–378.

[23] Apache hadoop. [Online]. Available: http://hadoop.apache.org/
[24] A. Vitorovic, M. Elseidy, and C. Koch, “Load balancing and skew

resilience for parallel joins,” in Data Engineering (ICDE), 2016 IEEE
32nd International Conference on. IEEE, 2016, pp. 313–324.

[25] T.-D. Phan, S. Ibrahim, A. C. Zhou, G. Aupy, and G. Antoniu, “Energy-
driven straggler mitigation in mapreduce,” in European Conference on
Parallel Processing. Springer, 2017, pp. 385–398.

[26] Stanford snap. [Online]. Available: http://snap.stanford.edu/
[27] Sloan digital sky survey. [Online]. Available: http://www.sdss.org/

242

