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Abstract
Apache Spark is one of the recently popularized open-source platforms that is increasingly being used for large-scale data
analytic applications. However, while performance prediction in such systems is important for efficient job scheduling and
optimizing resource allocation, interference among multiple Apache Spark jobs running concurrently in a virtualized envi-
ronment makes it extremely difficult, which is addressed in this paper. Towards that, first, we develop data-driven analytical
models to estimate the effect of interference among multiple Apache Spark jobs on job execution time in virtualized cloud
environments. Next, we present the design of an interference aware job scheduling algorithm leveraging the developed analyt-
ical framework. We evaluated the accuracy of our models using four real-life applications (e.g., Page rank, K-means, Logistic
regression, and Word count) on a 6 node cluster while running up to four jobs concurrently. Our experimental results show
that the scheduling algorithm reduces the average execution time of individual jobs and the total execution time significantly,
and ranges between 47 and 26% for individual jobs and 2–13% for total execution time respectively.

Keywords Apache Spark · Job scheduling · Performance interference modeling · Execution time prediction

1 Introduction

With significant advancement in wired and wireless sen-
sor technologies and wide adoption of Internet connectivity,
researchers are exploring increasingly diverse, complex,
and extensible dynamic data driven application systems
(DDDAS) such as smart cities [16], smart grid monitor-
ing [16], infrastructure and asset management [16], and

This paper is a significantly extended version of the authors’ prior
work [30,31] and includes the design and evaluation of interference
aware job scheduling algorithms, which is not presented in prior
efforts.
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environmental applications such as target tracking [11,29],
volcanic ash propagation and hazard analysis [2,22,24], just
to name a few.As the scale of the applications and the volume
of data that needs to be stored andprocessed continue to grow,
service providers are increasingly adopting cloud-based solu-
tions (e.g., Apache Hadoop [13], Apache Spark [31]) to
provide reliable and scalable service while maximizing the
resource utilization and minimizing the operating cost.

Among different cloud computing platforms, Apache
Spark [33] is one of the recently popularized open-source
platforms that is currently used by over 500 organizations,
including companies such as Amazon, eBay and Baidu.1

Apache Spark leverages the concept of resilient distributed
datasets (RDDs) [34] and in-memory computation to enable
fast processing of large volume of data, making it suitable
for large-scale data analytic applications. However, while
performance prediction in such systems is important to opti-
mize resource allocation [6,8,14], it is nontrivial for Apache
Spark jobs for several reasons as follows. First, the execu-
tion time of a particular job on Apache Spark platform can
vary significantly depending on the input data type and size,
design and implementation of the algorithm, and comput-

1 http://spark.apache.org/faq.html.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-1466-3&domain=pdf
http://spark.apache.org/faq.html


S2224 Cluster Computing (2019) 22:S2223–S2237

ing capability (e.g., number of nodes, CPU speed, memory
size), making it difficult to predict job performance. Sec-
ond and finally, with advancement in hardware technology,
virtualization technique is increasingly being used to share
resources among applications [25]. However, while virtu-
alization isolates multiple applications running on separate
virtual machines, the interference among these applications
still affects the execution performance. Due to the aforemen-
tioned factors, modeling performance of multiple Apache
Spark jobs running in a virtualized environment concurrently
is extremely challenging. While our own prior effort looked
into the problem of performance prediction for a single job
running on Apache Spark platform [30], that approach does
not address the challenge of performance modeling for mul-
tiple jobs running in parallel on the same cluster.

To address this void, in this paper, we focus on modeling
interference among multiple Apache Spark jobs, and predict
the execution time of a jobwhen interferedwith other jobs. In
contrast to hard to interpret machine learning approaches that
are often used to predict system performance leveraging past
system execution data, we apply analytical approach that can
provide a better understanding regarding the observed behav-
ior (e.g., execution slowdown), exposing the underlying
interactions amongmultiple jobs [15,19,20,37]. Specifically,
we use a simulation job (an Apache Spark job implemented
by us) to predict the slowdown ratio while running multiple
jobs concurrently, and use the slowdown ratio to predict the
execution time. As Apache spark jobs follow a multi-stage
execution model (more details are discussed in Sect. 3) and
different stages have different characteristics (e.g., I/O inten-
sive vs. CPU intensive), our framework develops interference
models for each stage, and predicts execution time for each
stage separately. Finally, as concurrent Apache Spark jobs
can heavily interfere, we design and implement a sched-
uler that automatically schedules and executes submitted
Spark jobs leveraging the performance prediction frame-
work, minimizing interference and reducing job execution
time significantly.

We evaluated our framework with four real-world appli-
cations, namely, Page Rank, K-means clustering algorithm,
Logistic regression, and Word count application. We varied
the number of concurrent jobs up to 4 and predicted execu-
tion time for individual stages.While the prediction accuracy
for individual stages varied, it ranged between 86 and 99%
when the number of concurrent jobs was four and all started
simultaneously, and ranged between 71 and 99% when the
number of concurrent jobs was four and started at different
times. Furthermore, the scheduling algorithm reduced the
average execution time of individual jobs and the total exe-
cution time (i.e., completion time of the last job minus the
start time of the first job) significantly, and ranged between
47 and 26% for individual jobs and 2–13% for total execution
time respectively.

The rest of the paper is organized as follows. Section 2
describes prior research that is related to our work. Section 3
presents the models that are used to predict job performance
and the interference aware job scheduling algorithm. Sec-
tion 4 presents the experimental results. Limitations of our
current work and future directions are discussed in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Related work

With the proliferation of cloud computing platforms, sig-
nificant volume of prior work looked into the problem of
performance modeling in cloud settings and distributed sys-
tems in general [1,4,9,12,17,18,21,23,28,36]. Among these,
PREDIcT [23] looks into the problem of predicting runtime
for network intensive iterative algorithms and focuses on
Hadoop MapReduce platform. Starfish [12] leverages ana-
lytical approaches to predict job performance based on job
simulation data. CloudScope [5] is one of the more recent
efforts that employs a discrete-time Markov Chain model to
predict the performance interference of co-resident applica-
tions by modeling an application as a sequence of job slices
and estimating the probability of a job moving from one
state to another considering different factors such as current
workloads and slowdown. Matrix [7] utilizes machine learn-
ing methods to predict application performance on virtual
machines by applying clustering methods to classify appli-
cations and predicts the performance of new applications by
comparing against the previously trained models.

Interference modeling among multiple applications run-
ning on MapReduce framework is tried before as well for
the purpose of efficient job scheduling [3] that requires train-
ing using different combinations of applications, which can
quickly become prohibitive. MIMP [35] presents a progress
aware scheduler for Hadoop framework that applies regres-
sionmodel to train and predict task completion time based on
past execution. HybridMR [25] presents anotherMapReduce
scheduler for hybrid data center consisting of physical and
virtual machines. This scheduler uses performance interfer-
ence models to guide resource allocation, and applies linear
and non-linear exponential regressionmodel to capture CPU,
I/O, and memory interference.

While these prior efforts provide invaluable insight to the
problem of performance modeling, however, most of them
use black-box approaches and can not be extended easily
without retraining. Moreover, due to the multi-stage execu-
tion model and in-memory computation feature of Apache
Spark platform, it is nontrivial to apply these approaches
without further modifications for predicting the effect of
interference on job execution time. As such, we focus
on developing data-driven analytical models for modeling
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interference among multiple Apache Spark jobs which is
complementary to prior efforts.

3 Overview

Each Apache Spark job typically consists of multiple execu-
tion stages where each stage implements certain operations
and is executed sequentially. Moreover, to facilitate paral-
lel processing, input data set is partitioned into multiple sets
which are distributed over multiple worker nodes. Within
each worker node, multiple batches of tasks are launched to
process the corresponding partition of the input data. The
number of tasks within each node is determined based on the
size of the input data and configuration settings of the pro-
gram. For example, if the input data size of the PageRank job
is 2.5 GB, the total number of input blocks will be 40 for a
default block size of 64 MB. As the number of tasks is equal
to the number of input blocks and the number of tasks in each
stage is same within one Spark job, there will be 40 tasks in
each stage. However, different CPU core may complete dif-
ferent number of tasks due to the differences in computing
ability and uncertainty during the program execution.

Given the above multistage execution model, the main
idea behind our work is as follows (Fig. 1). First, for a given
Apache Spark job, we predict the execution time for each
stage leveraging the performance model developed based on
the performance of the actual job with smaller input data set.
Note that this model is presented in our prior work [30], and
assumes that there are no interference in the system from
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Fig. 1 Performance prediction for interfered jobs

other jobs. Next, we estimate the slowdown ratio for a given
number of jobs running concurrently by executing our sim-
ulation job, which is implemented by us (more details in
Sect. 4) and is different than any of the four jobs that we used
for evaluation. However, as the slowdown ratio due to inter-
ference among simulated jobs can be different compared to
the actual jobs, for a given job, we adjust the expected slow-
down ratio by taking into account the actual job parameters
such as input data size and disk I/O characteristics. Once we
estimate the expected slowdown ratio, we estimate the execu-
tion time considering the interference. For completeness, we
first briefly present themodel that is used to predict execution
time assumingno interference fromour earlierwork [30], and
then present the model for predicting the slowdown ratio due
to interference that allows us to predict the execution time in
the presence of interference among multiple jobs.

3.1 Model for estimating execution time

As an Apache Spark job is executed in multiple stages where
each stage containsmultiple tasks, we use the following nota-
tion to represent an Apache Spark job.

Job = {Stagei | 0 ≤ i ≤ M} (1)

Stagei = {Taski, j | 0 ≤ j ≤ N }, (2)

whereM is the number of stages in a job and N is the number
of tasks in a stage.

Next, as different stages within a job are executed sequen-
tially, we represent the execution time of a job as the sum of
the execution time of each stage plus the job startup time and
the job cleanup time as follows.

JobTime = Startup +
M∑

s=1

StageTimes + Cleanup (3)

Next, within each stage, as one CPU core executes one task
at a time, in a cluster with H worker nodes, the number of
tasks P that can run in parallel is calculated as follows.

P =
H∑

h=1

CoreNumh, (4)

whereCoreNumh is the number of CPU cores of worker node
h and H is the number of worker nodes in the cluster. Hence,
within an execution stage, tasks in each stage are executed
in batches where each batch consists of P tasks running in
parallel. However, due to the differences in computing capa-
bilities amongdifferentworker nodes in a cluster and inherent
uncertainty in program execution, the execution time of dif-
ferent tasks may vary significantly. Therefore, the time spent
in a particular stage can be calculated as the maximum of the
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sum of all the sequential tasks’ time within a stage plus the
stage startup time and the stage cleanup time as follows.

StageTime = Startup + P
max
c=1

Kc∑

i=1

TaskTimec,i + Cleanup,

(5)

where P is the number of total CPU cores, and Kc is the
number of sequential tasks executed on CPU core c.

Finally, as different tasks in a stage follow the same exe-
cution pattern, the execution time of a task can be computed
as follows.

TaskTime = DeserializationTime + RunTime

+ SerializationTime, (6)

where DeserializationTime is the time taken to deserialize
the input data, SerializationTime is the time taken to serialize
the result, and RunTime is the actual time spent performing
operations on data such as data mapping, filtering, calcula-
tion, and analyses. Based on the above model, to predict job
performance, the presented framework first executes the pro-
gram on a cluster using limited amount of sample input data
and collects performance metrics such as run time during the
simulated run.

Next, to predict the execution time of the actual run
based on the extracted performance metric from simulated
run, we first calculate the number of tasks N where N =
InputSize/BlockSize, InputSize is the size of the input data,
and BlockSize is the size of one data block in HDFS. The
tasks within a stage are scheduled to run batch by batch, and
the number of tasks P in each batch is computed as shown
in Eq. (4). In one batch of tasks, while the tasks may start
simultaneously, they may not finish at the same time due to
various factors such as data skew problem, and differences
in computing capability of different worker nodes. Hence,
using sampled data, we calculate the average execution time
for a task for a given stage for a worker node h as follows.

TaskRunTimeh,i = DeserializeTimeh,i + RunTimeh,i

+ SerializationTimeh,i (7)

AvgTaskTimeh = 1

nh

nh∑

i=1

TaskRunTimeh,i , (8)

where nh is the number of tasks running in host h in a particu-
lar stage of the sample job.Moreover, during our experiment,
we observed that the average execution time of the first batch
is significantly different compared to the subsequent batches
within the same stage, which we capture as follows.

Ratioh =
1

nh−Ph

∑nh
i=Ph+1 TaskTimeh,i

1
Ph

∑Ph
j=1 TaskTimeh, j

, (9)

where nh is the number of tasks running in host h, and Ph
is the number of tasks in the first batch. As tasks execute
on different hosts in parallel, to predict the execution time
for a particular stage during actual execution, stage Startup
time and Cleanup time are viewed as constants which are
extracted from simulation logs, and stage execution time is
estimated as follows.

EstStageTime = Startup + P
max
c=1

Kc∑

i=1

AvgTaskTimec,i

+Cleanup (10)

EstTaskTimec,i =
{
AvgTaskTimec, i = 1
AvgLaterT askT imec, i > 1

, (11)

where P is the number of total CPU cores calculated in Eq.
(4) and Kc is the number of sequential tasks running on CPU
core c. AvgTaskTimec is the average time of the tasks of the
first batch running on CPU core c for the corresponding
host, which is calculated in Eq. (8). AvgLaterTaskTimec is
the average time of the tasks of the following batches, which
is calculated as Ratioh × AvgTaskTimeh .

While we can apply the prediction model presented in
this section to estimate the execution time for a single job
assuming no interference [30], we still need a way to predict
the slowdown ratio when interfered with other jobs, which
we address as follows.

3.2 Modeling interference

As different stages of a job are expected to have different
characteristics in terms of resource utilization (e.g., CPU,
I/O, memory), different stages of multiple jobs running con-
currently on a system are expected to result in different
interference patterns, affecting the execution time differently.
Based on this observation, we model the slowdown ratio due
to interference amongmultiple jobs for each stage separately.
Towards that, in ourmodel, each stage is represented as a vec-
tor consisting of execution time, CPU usage, disk I/O rate,
and network I/O rate as follows.

Resi = (RunTimei ,CPUi ,DiskIOi ,NetIOi ), (12)

where 1 ≤ i ≤ M , and M is the number of stages in a job.
Memory was not one of the bottleneck resources in our case.
As such, we only considered Disk I/O and did not consider
memory utilization in our model, which can be incorporated
if needed for certain platforms/scenarios.
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Next, the slowdown resulting from interference with other
applications for a particular stage is represented as follows.

SlowdownRatio(Stagei,k) = f (Resi,k,ResOtherjobs), (13)

where 1 ≤ k ≤ J , 1 ≤ i ≤ M , J is the number of jobs run-
ning in parallel, and M is the number of stages in the Apache
Spark job. ResOtherjobs represents the resources consumed by
other jobs that are running concurrently with Stagei,k . Sim-
ply put, this slowdown ratio is the ratio between execution
time with interference over execution time without interfer-
ence for a particular stage. Hence, once we estimate the value
of the slowdown ratio and the expected execution time when
there is no interference, we can estimate the execution time
if there are interference with other jobs.

As the slowdown happens primarily due to contention for
bottleneck resources in the system, to better understand the
underlying reasons behind the slowdown, we ran a series of
experiments and collected job event logs and resource con-
sumption data, and then extracted the resource usage profile
for each stage. Job event log is generated by Apache Spark
platform, and resource consumption data is collected using
system monitoring tool dstat [10]. Apache Spark log records
the time line of different stages of a running job, which was
used to determine the submission and completion time of dif-
ferent stages of a job. The resource usage for different stages
of a job is represented as below:

CPUi = (CPUusri ,CPUsysi ,CPUidlei ,CPUwaiti ) (14)

DiskIOi = (RateofDiskReadi ,RateofDiskWritei ) (15)

NetIOi = (RateofNetReceivei ,RateofNetSendi ), (16)

where 1 ≤ i ≤ M , andM is the number of stages in aApache
Spark job.

As an Apache Spark job uses in-memory data processing
to reduce execution time, in the first stage of a job, it reads the
input data to memory, and then analyzes the in-memory data
in the subsequent stages. Due to this characteristic, in the first
stage, frequent I/O is expected, leading to longer I/O wait.
Based on this observation, as bulk of the disk I/O happens in
the first stage, in our model, we calculate the slowdown ratio
for the first stage only, and assume that the slowdown ratio in
caseswhere the first stage interfereswith the following stages
from another job is 1.0 (i.e., the slowdown due to interference
is expected to be minimal). Note that, while this assumption
is not accurate for certain jobs and stages, the error intro-
duced due to this assumption in prediction accuracy is not
significant in our case.

As most of the time spent in the first stage is due to read-
ing data from disk to memory, we represent the relationship
between the amount of data read in the first stage (e.g., size
of input data), the rate of disk read, and the execution time
of the first stage as follows:

RunTimeStage 1 = c × Input Data Size

Rate of DiskReadStage 1
(17)

Now, if we assume that we execute the same job twice, once
with the reduced input data set (i.e., sample job) and once
with the complete input data set (i.e., complete job), from
Eq. 17, we can have the following. The word Int. refers to
Interference in the following equations.

InputDataSizeSample job
InputDataSizeComplete job

= Rate of Disk ReadSample job,Stage1
RateofDiskReadComplete job,Stage 1

× RunTimeSample Job,Stage 1
RunTimeComplete job without Int.,Stage 1

(18)

Based on Eq. 18, we can have the following equation for
predicting the rate of disk read for a complete job.

Predicted Rate of Disk ReadComplete Job without Int., Stage 1
= Rate of Disk ReadSample Job, Stage 1

× RunTimeSample Job, Stage 1
RunTimeComplete Job without Int., Stage 1

× Input SizeComplete Job
Input SizeSample Job

(19)

In the above equation, we can estimate the value of
RunTimeComplete Job without Int., Stage 1 using the model descri-
bed in Sect. 3.1 [30]. Once we predict the rate of disk read for
a complete job with no interference, next, we need to model
the relation between the rate of disk read and the slowdown
ratio when there is interference. For that, first, we run a sim-
ulation program (written by us as described in Sect. 4) to
collect the runtime information with and without interfer-
ence and calculate the parameter βn as follows.

βn = 1

Rate of Disk ReadSimulation Run without Int., Stage 1

×
(
RunTimeSimulation Run with Int. for n jobs, Stage 1

RunTimeSimulation Run without Int., Stage 1

−
⌊RunTimeSimulation Run with Int. for n jobs, Stage 1

RunTimeSimulation run without Int., Stage 1

⌋)

(20)

In this paper, we assume that there can be at most 4 con-
current jobs in a system, and varied n between 2 and 4 to
calculate β2, β3, and β4. Running the simulation job and cal-
culating βn take only few minutes and need to be done only
once for a given environment. Next, we use βn to estimate
the slowdown ratio when there are n concurrent jobs in the
system as follows.
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SlowdownRatio(Stage(1,k))

= RunTimeComplete Job with Int., Stage 1
RunTimeComplete Job without Int., Stage 1

= βn

×PredictedRateofDiskReadComplete Job without Int., Stage 1

+
⌊ RunTimeSimulation run with Int., Stage 1
RunTimeSimulation Run without Int., Stage 1

⌋
(21)

3.3 The cascading effect

Given the above formulation, if we assume that all the jobs
are of same type and start at the same time, modeling inter-
ference is straightforward as they all have the same execution
behavior in each stage. However, for interference among dif-
ferent types of jobs possibly starting at different times, this is
a bit more complicated due to the possible cascading effect.
For example, the slowdown of stage 1 of job Amay push this
stage to interfere with stage 2 of job B. Hence, a dynamic
interference estimation algorithm is designed to solve this
problem. The main idea behind the algorithm is as follows.
First, the algorithm uses the execution time line of each job
as input, and calculates the slowdown ratio for each stage of
different jobs within the same time slot, and generates the
execution time line of each job under interference condition.
Based on that, the algorithm identifies the job that will fin-
ish its first stage the earliest, removes that job from the list,
and recalculates the effect of interference for the remaining
jobs for the remainder of the execution time. The algorithm
applies this repeatedly until the list becomes empty. This
dynamic interference estimation algorithm is described in
Algorithm 1 (Appendix).

3.4 Interference aware job scheduling

Finally, as concurrent Apache Spark jobs often heavily inter-
fere, especially at the first stage, tominimize interference and
job execution time,we design and implement a scheduler that
automatically schedules and executes submitted Spark jobs
leveraging the performance prediction framework presented
earlier. Specifically, when a new job arrives in the system, if
there is no existing job in the system, the scheduler locates
available servers that can execute the job and starts the job
immediately. However, if there are existing jobs running in
the system with possibly more jobs waiting in the queue, the
scheduler calculates the waiting time (if any) of the new job
and readjusts the waiting time of the jobs that are already in
the queue (if needed) to determine the best scheduling plan
and updates the scheduling file accordingly (Note that jobs
are not executed onfirst-come-first serve basis in our system).

The process of calculating the waiting time for a job in
multiple steps is illustrated in Fig. 2. Here we assume that
the first job J1 is submitted at time point T1, and is started
immediately as there is no other job in the system. The second

Fig. 2 A scheduling example

job J2 is submitted at time T2. At that time, the scheduling
algorithm calculates the amount of time already executed
by J1 (i.e., T2 − T1) to decide whether J2 can be started
immediately or needs towait to avoid interference. If J2 needs
to wait, the algorithm calculates the tentative wait time for J2
based on the interference model, which is ΔT , and updates
the scheduling file by writing the waiting period ΔT for J2.

Now, let us assume that, at time point T3, the third job
J3 arrives in the system. At that point, the algorithm first
calculates the execution time (which is different than the
wall clock time) of the two jobs already running in the
system. As J1 executed alone before S1 and executed concur-
rently with J2 between S1 and T3, we calculate the execution
time of J1 since the last job submission time (i.e., T2) as
ExeTimeJ1 = (S1 − T2) + (T3 − S1) × RatioJ1 , and the
execution time for J2 as ExeTime2 = (T3 − S1) × RatioJ2 ,
where RatioJ1 and RatioJ2 are the slow down ratio of J1 and
J2 respectively when interfered with one job. Note that the
slowdown ratios are different for different jobs due to differ-
ences in job characteristics. Also, as the job profiles in the
scheduling file are updated every time a new job is submitted,
we only need to estimate the execution time for each running
job since the last job submission time.

After calculating the execution time for these two jobs
(which tell us what stage each job is at currently), we update
the job profiles for J1 and J2, and then decide whether J3 can
start immediately or not, based on the possibility of interfer-
ence with the currently running jobs.

While calculating the execution time, we have to consider
the possibility that each job may interfere with different jobs
at different points in time during the execution. To handle this
possibility, the algorithm saves the start and end time point
of the first stage for each job (as the significant interference
happens in the first stage of a job), and sorts the list based on
start time points, and determines which set of jobs interfere
at a particular point in time, and calculates the execution time
incrementally.

The algorithm to determine the waiting time for a job
is shown in Algorithm 2 (Appendix) which has two main
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parts. The first part of the algorithm consists of the function
depicted in Algorithm 3 (Appendix) that calculates the exe-
cution time of the previously submitted jobs and updates the
job schedule file [Algorithm 4 (Appendix)]. The second part
consists of Algorithm 5 (Appendix) that searches the combi-
nation of waiting times and job schedules that will minimize
the total execution time.

4 Evaluation

To evaluate the accuracy of our modeling framework and the
performance of the job scheduling algorithm, we used a clus-
ter of 6 machines. Each machine had 8 CPU cores (Intel(R)
Xeon(R) CPU E5620, 2.40GHz) and 22 GB of RAM mem-
ory where each machine hosted 4 virtual machines. We used
Xen hypervisor [32] to create up to four virtual machines
on each physical machine. Each virtual machine was con-
figured with 4 GB of RAM memory and 1 CPU core. For
the deployed Apache Spark platform, one machine served
as the master node, and the remaining five machines served
as the worker nodes. We created multiple clusters leveraging
virtual machines to execute multiple Apache Spark jobs in
parallel.

In our evaluation, for prediction, first, we need to estimate
the parameter βn in Eq. (20). Towards that, we implemented
our own Apache Spark job and executed that on our cluster
to obtain the execution time and resource consumption infor-
mation. This simulation job consists of three stages executing
distinct(), groupByKey(), and count() operation respectively.
Distinct() implements a mapping function and parses the
input data, groupByKey() processes the output of distinct()
operation, and count() is a CPU intensive operation perform-
ing data summarization. This simulation job is executed with
2.5 GB of sample data where the first stage implementing
the Distinct() operation involves significant I/O compared
to the following two stages. To measure βn , we executed n
(n = 1, 2, 3, 4) instances of this simulation job in parallel.
As shown in Fig. 3, the effect of interference is significant
for the first stage but minimal for the subsequent stages.

Fig. 3 Execution time for different number of simulation jobs

Once we estimated the value of βn , subsequently, we used
our formulation to predict the execution time for each stage of
each job separately considering different execution scenarios
and added up the prediction error for each stage to calculate
the total prediction accuracy R as below.

R = |1 −
∑M

i=1 |PredictedTimei − MeasuredTimei |∑M
j=1MeasuredTime j

|, (22)

where M is the number of stages in a job, PredictedTimei is
the predicted execution time for stagei , and MeasuredTimei
is the actual execution time of stagei . Different evaluation
scenarios are presented below.

4.1 Interference amongmultiple jobs of the same
type starting simultaneously

In a shared cluster, multiple Apache Spark jobs running
on separate virtual machines hosted on the same physical
machine can cause significant interference, impacting the
performance of each job. However, as different jobs may
have different execution patterns and resource requirements,
estimating the effect of interference on performance is non-
trivial. As such, to demonstrate the generalizability of our
work, we validated our model using four different Apache
Spark jobs, namely, PageRank (PR), K-means (KM), Logis-
tic regression (LR) and WordCount (WC). The jobs vary in
terms of the number of stages, the number of tasks, and the
library functions they use to implement the job. For exam-
ple, WordCount counts the word frequency for a given text
file. K-Means implements a clustering algorithm, and Logis-
tic regression implements the Logistic regression algorithm,
which are examples of machine learning jobs. Finally, PR
is an example of graph analyzing and processing jobs. For
testing, we used the LiveJournal network dataset from SNAP
[27] for PR, which is processed through mapping each node
id onto a longer string to form a 20 GB input data set. K-
Means and Logistic regression used 20 GB of numerical
Color-Magnitude Diagram data of galaxy from Sloan Dig-
ital Sky Survey (SDSS) [26]. WordCount application used
20 GB of Wikipedia dump data.

In this part of the evaluation, we present the accuracy of
prediction while modeling the effect of interference among
multiple jobs of the same type (e.g., interference between n
instances of job x).

For prediction, we first executed the sample job (e.g., Page
rank) with 2.5 GB of input data which was extracted from
the actual input data to collect the job execution profile. We
ensured that no other job was running during this execution.
The collected execution trace was then used to predict the
execution time assuming no interference. Finally, we used
our framework to adjust the prediction assuming interfer-
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Table 1 Prediction accuracy for interference among same jobs

Job name Job number First stage Whole job

PR 2 0.97 0.80

3 0.96 0.85

4 0.92 0.82

KM 2 0.75 0.70

3 0.71 0.68

4 0.98 0.92

LR 2 0.74 0.78

3 0.79 0.81

4 0.97 0.97

WC 2 0.87 0.86

3 0.96 0.94

4 0.95 0.94

Table 2 Execution time prediction for four interfered PageRank jobs

Stage no. 1 2 3 4 5 6

Actual time (s) 652.7 37.3 32.3 23.9 23.2 58.8

Predicted time (s) 594.3 43.0 10.6 5.4 5.0 28.3

ence. The prediction accuracy is summarized in Table 1. In
the table, PR, KM, LR, and WC refers to PR, KM, LR, and
WC application respectively. Column Job number (e.g., 2–4)
indicates the number of jobs that were executed in paral-
lel. For instance, a value of 2 indicates that two instances
of the same job were executed in parallel. As can be seen,
prediction accuracy is highest for Logistic regression appli-
cation (97%) and lowest for K-means (68%).The predicted
execution time and the actual execution time when we exe-
cuted four instances of the same job in parallel are shown in
Tables 2, 3, 4, and 5 for PR, KM, LR, and WC respectively.

The predicted execution time and the actual execution time
when we executed four different jobs in parallel are shown in
Tables 6, 7, 8, and 9 for PR, KM, LR, and WC respectively.

4.2 Interference amongmultiple jobs of different
types starting simultaneously

In this section, we present the accuracy of prediction while
modeling the interference among n different jobs concur-
rently, where n was varied from 2 to 4. For example, when
n = 2, we execute two different jobs concurrently. The pre-
diction accuracy while running two different jobs in parallel
is summarized in Table 10. As shown in the table, there are a
total of 6 combinations to consider. As can be seen, predic-
tion accuracy ranges between 97 and 69% for the whole job,
and between 99 and 70% for the first stage, which incurs the
bulk of the execution time.

For n = 3, we execute three different jobs concurrently.
The prediction accuracy while running three different jobs
in parallel is summarized in Table 11. As shown in the table,
there are a total of 4 combinations to consider. As can be
seen, prediction accuracy ranges between 90 and 79% for
the whole job, and between 99 and 83% for the first stage.

Finally, for n = 4, we execute four different jobs concur-
rently. The prediction accuracy while running four different
jobs in parallel is summarized in Table 12. As shown in the
table, there was only one combination to consider. As can
be seen, prediction accuracy ranges between 99 and 86% for
the whole job, and between 99 and 92% for the first stage.

4.3 Interference amongmultiple jobs starting at
different times

Finally, to test the prediction accuracy of our model where
different jobs may arrive and start at different times, we
use the four Apache Spark jobs and input data set as
before, and start them randomly at different times. To ensure
that each job will interfere with at least one other job
while executing, we set the starting time for each job as
startingTime ∈ [minstagetime/10,minstagetime/2], where
minstagetime represents the smallest execution time for the
first stage among all the jobs. In our case, minstagetime =

Table 3 Execution time
prediction for four interfered
K-means jobs

Stage no. 1 2 3 4 5 6 7 8 9 10 11 12

Actual time (s) 688.4 7.1 19.9 8.1 16.5 7.4 15.9 7.2 15.8 7.0 15.6 7.0

Predicted time (s) 708.3 7.4 25.2 18.1 22.9 9.7 23.6 8.4 23.2 9.2 24.8 6.2

Table 4 Execution time
prediction for four interfered
Logistic regression jobs

Stage no. 1 2 3 4 5 6 7 8 9 10

Actual time (s) 649.6 7.3 7.5 7.3 7.4 7.2 7.5 7.2 7.5 7.4

Predicted time (s) 669.2 7.1 7.2 7.6 6.6 7.0 6.5 7.9 6.9 6.3
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Table 5 Execution time prediction for four interfered WordCount jobs

Stage no. 1 2

Actual time (s) 598.8 66.8

Predicted time (s) 631.8 77.8

Table 6 Execution time prediction for PageRank job interfered with
other three jobs

Stage no. 1 2 3 4 5 6

Actual time (s) 646.4 36.9 30.4 22.3 21.8 26.9

Predicted time (s) 594.3 43.0 10.6 5.4 5.0 28.3

190 s, causing the starting time for different jobs to be
between 19 and 95 s.

Given the above range, for evaluation, we randomly pick
one job and start at time 0, and then set the starting time for
the remaining three jobs between 19 and 95 s randomly. We
considered four scenarios where the starting job is different
in each scenario. The prediction accuracy for the whole job
while running four different jobs in parallel starting at differ-
ent times is summarized in Table 13. As shown in the table,
in our evaluation, prediction accuracy ranges between 99 and
71% for the whole job, and between 99 and 72% for the first
stage. The predicted execution time and the actual execution
time for PR, KM, LR, and WC under Scenario-I are shown
in Tables 14, 15, 16, and 17 respectively.

4.4 Performance of interference aware job
scheduling algorithm

To evaluate the performance of the job scheduling algorithm,
we used the four Apache Spark jobs as before (e.g., PR, KM,
LR and WC). The order of job submission was varied in dif-
ferent experiments and the submission time was randomly

chosen between 0 and 100 s. The performance of our algo-
rithm is compared against the default condition where each
job is started immediately after submission.

In the first experiment, the four jobs were submitted in
the order of PR, KM, LR, WC, and the input data size was
set to 20 GB for each of them. PR was submitted at 0 s,
KM was submitted at 16 s, LR was submitted at 47 s, and
WC was submitted at 94 s. As shown in Fig. 4, the average
execution time of individual jobs and total execution time
(i.e., completion time of the last job minus the start time of
the first job) were reduced by 47 and 10% respectively.

In the second experiment, the four jobs were submitted in
the same order (PR, KM, LR, WC), but the input data size
were set to 20 GB for PR, 15 GB for KM, 10 GB for LR and
5 GB for WC. PR was submitted at 0 s, KM was submitted
at 59 s, LR was submitted at 88 s, and WC was submitted
at 97 s. As shown in Fig. 5, the average execution time of
individual jobs and total execution time were reduced by 34
and 13% respectively.

In the third experiment, the four jobs were submitted in
the order of KM, WC, PR, LR, and the input data size were
set to 10 GB for KM, 20 GB for WC, 15 GB for PR and
5 GB for LR respectively. KM was submitted at 0 s, WC
was submitted at 30 s, PR was submitted at 51 s, and LR was
submitted at 71 s. As shown in Fig. 6, the average execution
time of individual jobs and total execution timewere reduced
by 26 and 2% respectively.

In the fourth experiment, the four jobs were submitted in
the order of LR, WC, KM, PR, and the input data size were
set to 15 GB for LR, 10 GB for WC, 20 GB for KM and
15 GB for PR respectively. LR was submitted at 0 s, WC
was submitted at 8 s, KM was submitted at 53 s, and PR was
submitted at 64 s. As shown in Fig. 7, the average execution
time of individual jobs and total execution timewere reduced
by 39 and 8% respectively.

In the fifth and last experiment, the four jobs were submit-
ted in the order of WC, PR, LR, KM, and the input data size
were set to 20 GB for WC, 15 GB for PR, 10 GB for LR and
10 GB for KM respectively. WC was submitted at 0 s, PR

Table 7 Execution time
prediction for K-means job
interfered with other three jobs

Stage no. 1 2 3 4 5 6 7 8 9 10 11 12

Actual time (s) 657.4 7.1 20.6 9.6 18.1 7.3 17.8 7.0 17.4 7.1 17.7 7.1

Predicted time (s) 657.4 7.4 25.2 18.1 22.9 9.7 23.6 8.4 23.2 9.2 24.8 6.2

Table 8 Execution time
prediction for Logistic
regression job interfered with
other three jobs

Stage no. 1 2 3 4 5 6 7 8 9 10

Actual time (s) 651.9 7.3 7.4 7.1 7.9 7.1 7.3 7.2 7.7 7.1

Predicted time (s) 646.0 7.1 7.2 7.6 6.6 7.0 6.5 7.9 6.9 6.3
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Table 9 Execution time prediction for WordCount job interfered with
other three jobs

Stage no. 1 2

Actual time (s) 660.2 40.2

Predicted time (s) 622.2 77.8

Table 10 Prediction accuracy for two different jobs

Job name Interfered job First stage Whole job

PR KM 0.91 0.79

LR 0.93 0.81

WC 0.99 0.85

KM PR 0.89 0.80

LR 0.80 0.73

WC 0.75 0.69

LR PR 0.97 0.97

KM 0.73 0.77

WC 0.70 0.75

WC PR 0.96 0.87

KM 0.93 0.84

LR 0.96 0.88

Table 11 Prediction accuracy for three different jobs

Job name Interfered jobs First stage Whole job

PR KM, LR 0.96 0.87

KM, WC 0.99 0.90

LR, WC 0.99 0.90

KM PR, LR 0.84 0.79

PR, WC 0.92 0.87

LR, WC 0.83 0.80

LR PR, KM 0.84 0.85

PR, WC 0.87 0.88

KM, WC 0.83 0.84

WC PR, LR 0.93 0.87

PR, KM 0.93 0.87

KM, LR 0.94 0.89

was submitted at 7 s, LR was submitted at 27 s, and KM was
submitted at 71 s. As shown in Fig. 8, the average execution
time of individual jobs and total execution timewere reduced
by 40 and 8% respectively.

5 Discussion

While our framework can predict performance degradation
due to interference among multiple Apache Spark jobs with

Table 12 Prediction accuracy for four different jobs

Job name Interfered jobs First stage Whole job

PR KM, LR, WC 0.92 0.86

KM PR, LR, WC 0.99 0.95

LR PR, KM, WC 0.99 0.99

WC PR, KM, LR 0.95 0.90

Table 13 Prediction accuracy for interference among different jobs
starting at different times

Run Job
name

Starting
time (s)

First
stage

Whole
job

Scenario-I PR 0 0.91 0.81

KM 38 0.99 0.94

LR 26 0.94 0.94

WC 78 0.83 0.82

Scenario-II PR 91 0.90 0.82

KM 0 0.79 0.77

LR 48 0.87 0.88

WC 53 0.99 0.93

Scenario-III PR 20 0.99 0.90

KM 87 0.98 0.91

LR 0 0.84 0.85

WC 48 0.98 0.91

Scenario-IV PR 77 0.93 0.85

KM 25 0.72 0.71

LR 86 0.99 0.99

WC 0 0.99 0.93

Table 14 Execution time prediction for PageRank job in Scenario-I

Stage no. 1 2 3 4 5 6

Actual time (s) 575.3 36.4 33.7 24.1 22.5 55.8

Predicted time (s) 522.9 43.0 10.6 5.4 5.0 28.3

high accuracy and reduces the average execution time for
individual jobs significantly, we do acknowledge several lim-
itations of our current work as follows.

First, our current work models the interference for the
first stage only. However, as the presented framework pre-
dicts performance for each individual stage, the model can
be easily extended for cases where the interference happens
in later stages.

Second, as this work focuses on modeling interference
among multiple Apache Spark jobs, we assume that all the
VMs running on the samemachine are runningApache Spark
jobs. As such, if multiple VMs consolidated on the same
physical machine are running different kinds of jobs, our
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Table 15 Execution time
prediction for K-means job in
Scenario-I

Stage no. 1 2 3 4 5 6 7 8 9 10 11 12

Actual time (s) 611.8 6.9 21.0 8.2 18.0 7.5 17.6 7.2 17.5 7.1 17.3 6.9

Predicted time (s) 610.7 7.4 25.2 18.1 22.9 9.7 23.6 8.4 23.2 9.2 24.8 6.2

Table 16 Execution time
prediction for logistic regression
job in Scenario-I

Stage no. 1 2 3 4 5 6 7 8 9 10

Actual time (s) 576.8 7.4 7.3 7.4 7.2 7.1 7.8 7.3 7.2 7.1

Predicted time (s) 617.1 7.1 7.2 7.6 6.6 7.0 6.5 7.9 6.9 6.3

Table 17 Execution time prediction for WordCount job in Scenario-I

Stage no. 1 2

Actual time (s) 615.2 61.8

Predicted time (s) 506.5 77.8

Fig. 4 Result of scheduling Experiment 1. Column time length repre-
sents the total execution time (completion time of the last job minus the
start time of the first job)

Fig. 5 Result of scheduling Experiment 2. Column time length repre-
sents the total execution time (completion time of the last job minus the
start time of the first job)

model may not work as the model of interference will be dif-
ferent. While we can extend our approach for such scenarios,
it will require adaptation of model parameters.

Fig. 6 Result of scheduling Experiment 3. Column time length repre-
sents the total execution time (completion time of the last job minus the
start time of the first job)

Fig. 7 Result of scheduling Experiment 4. Column time length repre-
sents the total execution time (completion time of the last job minus the
start time of the first job)

Finally, the model was evaluated on a 6 node cluster
with 4 concurrent jobs, which is smaller compared to the
size of real-life clusters. None the less, our modeling frame-
work demonstrates the feasibility of modeling interference
forApache Spark platformon a virtualized cluster and should
work well once the parameters are estimated for different
cluster size and number of concurrent jobs in a system.
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Fig. 8 Result of scheduling Experiment 5. Column time length repre-
sents the total execution time (completion time of the last job minus the
start time of the first job)

6 Conclusion

In this paper, to predict the execution time of Apache Spark
jobs interfered with other jobs, we develop an interfer-
ence model. This model combines the execution information
and resource consumption profile for each stage of Apache
Spark jobs to calculate the slowdown ratio resulting from the
interference, and then predicts the execution timewhen inter-
fered with other jobs. Furthermore, an interference aware
job scheduling algorithm leveraging the analytical frame-
work is designed for Apache Spark platform. The developed
models and the algorithm are evaluated using four real-life
applications (e.g., Page rank, K-means, Logistic regression,
Word count) on a 6 node cluster while running up to four
jobs concurrently. Experimental results demonstrate that
our framework can achieve high prediction accuracy and
reduces average execution time for individual jobs signifi-
cantly, thereby improving the system utilization.
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Appendix

Input: List JobProf iles listing Execution Information without
Interference

Output: List JobT ime listing Execution Time with Interference
1 Function PredictJobExecution
2 Initialize List Phases, List JobT ime;
3 for all job ∈ JobProf iles do
4 Phases.add( job.getStage(0)); //first stage
5 end
6 while Phases.size > 0 do
7 Initialize MinTime ← MaxValue;
8 for all phase ∈ Phases do
9 r ← phase.calculateSlowdownRatio(Phases);

10 phaseTime ← phase.getStageTime() × r;
11 phase.setPhaseTime(phaseTime);
12 phase.setSlowdownRatio(r);
13 if phaseTime < MinTime then
14 MinTime ← phaseTime;
15 end
16 end
17 for all phase ∈ Phases do
18 if phase.getPhaseTime = MinTime then
19 StageTimeInterfere ← MinTime +

phase.getPartialTime();
20 JobT imes.add(phase, StageTimeInterfere);
21 Phases.remove(phase);
22 if JobProf iles.hasNextStage(phase) then
23 nextStage ←

JobProf iles.nextStage(phase);
24 Phases.add(nextStage);
25 end
26 else
27 phase.setStageTime(phase.getStageTime() −

MinT ime
phase.get SlowdownRatio() );

28 phase.setPartialTime(phase.getPartialTime +
MinTime);

29 end
30 end
31 end
32 end

Algorithm 1: Interference estimation algorithm
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Input: List JobProf iles listing Execution Information without
Interference

Output: List JobsWaitingT ime listing Job Waiting Time
before scheduling

1 Function Scheduling
2 JobProf iles ← CalculateExecutedTime(JobProf iles) ;
3 JobsWaitingT ime ← FindWaitingTime(JobProf iles) ;
4 end

Algorithm 2: Job scheduling algorithm

Input: List JobProf iles listing Execution Information without
Interference

Output: Remaining JobProf iles after previous scheduling
1 Function CalculateExecutedTime
2 Initialize SchIn f o, List JobT imeLine, Map

SlowdownRatios, ExeT ime;
3 SchIn f o ← read(ScheduleFile);
4 Last Exe ← SchIn f o.ExeTime();
5 LastWait ← SchIn f o.WaitTime();
6 JobsUpdate(JobProf iles,Last Exe,LastWait);
7 interval ← CurrentTime −SchIn f o.SubTime();
8 for all job ∈ JobProf iles do
9 JobT imeLine.add( job.getStage(0).getBegin());

10 JobT imeLine.add( job.getStage(0).getEnd());
11 R ← job.getStage(0).calculateSlowdownRatios();
12 SlowdownRatios.put( job,R);
13 end
14 Initialize List Parallel Jobs;
15 for all T imepoint ∈ JobT imeLine do
16 if T imepoint > interval then
17 T imepoint .setValue(interval);
18 end
19 gap ← T imepoint − LastT imepoint ;
20 job ← T imepoint .getJob();
21 for all job ∈ Parallel Jobs do
22 p ← Parallel Jobs.size() − 1;
23 ExeT ime.put( job,ExeT ime.get( job)

+gap × SlowdownRatios.get( job).get(p));
24 end
25 if T imepoint.isBegin() then
26 Parallel Jobs.add( job);
27 else
28 le f t time ← job.getDuration()

− job.getStage(0).getDuration();
29 if le f t time > interval − T imepoint then
30 ExeT ime.put( job,ExeT ime.get( job)

+interval − T imepoint .);
31 else
32 ExeT ime.put( job,ExeT ime.get( job)

+le f t time);
33 end
34 Parallel Jobs.remove( job);
35 end
36 LastT imepoint ← T imepoint ;
37 end
38 JobsUpdate(JobProf iles,LastWait ,0);
39 JobsUpdate(JobProf iles,ExeT ime,0);
40 end

Algorithm 3: Calculate executed time

Input: List JobProf iles, ExeT ime,WaitT ime
Output: Updated List JobProf iles

1 Function JobsUpdate
2 for all job ∈ JobProf iles do
3 if ExeT ime.get( job) > 0 then
4 job.minus(ExeT ime.get( job));
5 end
6 if WaitT ime.get( job) > 0 then
7 job.addStart(WaitT ime.get( job));
8 end
9 end

10 end
Algorithm 4: JobProfile Update

Input: List JobProfiles listing Execution Information without
Interference

Output: List JobsWaitingTime listing Job Waiting Time before
scheduling

1 Function FindWaitingTime
2 InitializeWaitN, minTime, Map JobsWait, List

JobsWaitingTime;
3 JobTime ← PredictJobExecution(JobProf iles);
4 for all job ∈ JobProfiles do
5 waitTimeMax ← JobTime.getMax() −job.getDuration();
6 for i ← 0 to WaitN do
7 Jobwait.add( i

WaitN × waitTimeMax) ;
8 end
9 JobsWait .put( job,Jobwait);

10 end
11 for Jobswait ∈ ∏N

i=1 JobsWait.get(i) do
12 JobsUpdate(JobProfiles,0,Jobswait);
13 JobTime ← PredictJobExecution(JobProfiles);
14 if JobTime.getMax() < minTime then
15 minTime ← JobTime.getMax() ;
16 JobsWaitingTime ← Jobswait;
17 end
18 end
19 end

Algorithm 5: Find waiting time
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